纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 7-14.doi: 10.13475/j.fzxb.20181103908

• 纤维材料 • 上一篇    下一篇

阻燃聚左旋乳酸及其纤维的制备与结构性能

张安莹1, 王照颖1, 王锐1(), 董振峰1, 魏丽菲2, 王德义3   

  1. 1.北京服装学院 材料科学与工程学院, 北京 100029
    2.四川大学 高分子科学与工程学院, 四川 成都 610065
    3.马德里高等材料研究院, 西班牙 马德里 28906
  • 收稿日期:2018-11-14 修回日期:2019-01-05 出版日期:2019-04-15 发布日期:2019-04-16
  • 通讯作者: 王锐
  • 作者简介:张安莹(1993—),女,硕士。主要研究方向为聚乳酸纤维的制备。
  • 基金资助:
    国家重点研究计划项目(2017YFB0309000)

Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof

ZHANG Anying1, WANG Zhaoying1, WANG Rui1(), DONG Zhenfeng1, WEI Lifei2, WANG Deyi3   

  1. 1. School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
    3. IMDEA Materials Institute, Madrid 28906, Spain
  • Received:2018-11-14 Revised:2019-01-05 Online:2019-04-15 Published:2019-04-16
  • Contact: WANG Rui

摘要:

为提高聚左旋乳酸(PLLA)的阻燃性及其可纺性,设计了环保[(6-氧-6H-二苯并-(c,e)(1,2)-氧磷杂己环-6-酮)-甲基]-丁二酸(DDP)阻燃PLLA体系,通过双螺杆熔融挤出方法制备了PLLA/DDP阻燃复合物,借助锥形量热仪、极限氧指数仪、垂直燃烧仪、扫描电子显微镜、差示扫描量热仪、热失重分析仪对复合物的结构与性能进行表征,研究了阻燃剂质量分数对PLLA阻燃性能的影响及其阻燃机制,并对阻燃剂最优添加量时的纺丝工艺及纤维性能进行分析。结果表明:当DDP质量分数为9%时,复合物的阻燃性能显著提高,其极限氧指数达到29%,垂直燃烧测试达到V-0级;复合物在800 ℃时的残炭量由10.7%增加到13.5%,且在该添加比例下具有优良的可纺性;将初生纤维3倍牵伸热定型后,其断裂强度为1.77 cN/dtex,断裂伸长率为44.9%。

关键词: 聚左旋乳酸, 无卤阻燃剂, 阻燃性能, 可纺性, 断裂强度

Abstract:

In order to study the flame retardancy and spinnability of poly(L-lactic acid) (PLLA), an environmentally [(6-oxo-6H-dibenzo-(c,e)(1,2)-oxaphosphorin-6-one)methyl] butanedioic acid (DDP) flame retardant PLLA system was designed. PLLA/DDP composites were prepared by twin-screw melt extrusion, and the structures and properties thereof were characterized by cone calorimetry, limiting oxygen index, vertical combustion, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis. The effect of the flame retardant content on the flame retardant properties of PLLA and the flame retardant mechanism of DDP on PLLA were also investigated. The spinning process and fiber properties at the optimum flame retardant dosage were studied. The results show that when the mass content of DDP is 9%, the LOI of the composite reaches 29% and the UL-94 test reaches grade V-0. The amount of carbon residue of the composite at 800 ℃ increases from 10.7% to 13.5%, and the composite has excellent spinnability. After the nascent fiber is stretched and heat set by 3 times, the breaking strength is 1.77 cN/dtex, and the elongation at break is 44.9%.

Key words: poly(L-lactic acid), halogen-free flame retardant, flame retardancy, spinnability, breaking strength

中图分类号: 

  • TQ342.89

表1

复合物的配比"

样品编号 PLLA质量分数 DDP质量分数
1 100 0
2 97 3
3 95 5
4 93 7
5 91 9
6 89 11

表2

纺丝工艺参数"

样品
编号
纺丝温度/℃ 卷绕速度/
(m·min-1)
热定型温度/℃
Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 管道 组件 上辊 下辊 热辊
1 160 185 180 180 180 180 500 60 75 85
5 165 195 210 210 210 210 500 75 80 90

图1

阻燃PLLA复合物的横截面扫描电镜照片(×500)"

图2

阻燃PLLA复合物的DSC曲线"

表3

阻燃PLLA复合物的DSC测试结果"

样品
编号
θg θcc θm θmc θ0 θm-θ0
1 60 98 174 99 91 83
2 60 96 173 97 87 86
3 59 98 172 93 90 82
4 59 97 172 92 89 83
5 59 97 172 91 89 83
6 59 98 170 89 81

图3

PLLA、DDP及其复合物的热力学曲线"

图4

阻燃PLLA复合物的热稳定性曲线"

图5

阻燃PLLA复合物的锥形量热曲线"

表4

阻燃PLLA复合物的LOI和UL-94测试结果"

样品
编号
LOI/
%
UL-94测试结果 30 s内熔滴数
t1/s t2/s 等级
1 19 20.9 23.0 V-2 18
2 22 10.5 4.5 V-2 16
3 25 17.4 10.5 V-2 16
4 25 12.4 6.3 V-2 14
5 29 8.1 4.5 V-0 13(自熄)
6 27 9.5 4.3 V-0 13(自熄)

图6

PLLA及其复合物在不同温度的红外谱图"

图7

不同温度下样品热降解气体红外谱图"

图8

1#和5#样品在热降解条件下气相产物的三维图"

[1] 纪国营, 王继文, 翟文涛, 等. 聚乳酸/淀粉生物基复合材料的发泡[J]. 塑料, 2013,42(6):54-57.
JI Guoying, WANG Jiwen, ZHAI Wentao. et al. Foaming of PLA/starch biocomposite[J]. Plastic, 2013,42(6):54-57.
[2] LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008,33(8):820-852.
[3] CHEN L, WANG Y Z. A review on flame retardant technology in China: Part I: development of flame retardants[J]. Polymers for Advanced Technologies, 2010,21(1):1-26.
[4] REN J. Biodegradable Poly(lactic acid): Synthesis, Modification, Processing and Applications[M]. Beijing: Tsinghua University Press, 2011: 6-17.
[5] BOURBIGOT S, FONTAINE G. Flame retardancy of polylactide: an overview[J]. Polymer Chemistry, 2010,1(9):1413-1422.
[6] 徐亚雷, 侯连龙, 夏鹏. 聚乳酸高性能化的研究进展[J]. 塑料工业, 2012,40(10):14-19.
XU Yalei, HOU Lianlong, XIA Peng. Study progress on the performance promotion of PLA[J]. China Plastics Industry, 2012,40(10):14-19.
[7] 宋艳朋, 王德义, 林玲, 等. 主链含磷阻燃聚乳酸的制备及其与聚乳酸共混材料的研究[C]// 中国阻燃学术年会. 北京:中国阻燃学会, 2009: 156-160.
SONG Yanpeng, WANG Deyi, LIN Ling, et al. Preparation of flame retardant polylactic acid containing phosphor in main chain and its application with polylactic acid blends[C]// China Flame Retardant Academic Annual Meeting. Beijing: China Flame Perarlant Society, 2009: 156-160.
[8] 张胜, 陈宸, 谷晓昱, 等. 聚乳酸的无卤阻燃研究进展[J]. 塑料, 2015,44(4):6-12.
ZHANG Sheng, CHEN Chen, GU Xiaoyu, et al. Research progress on non-halogen flame retardant polylactic acid[J]. Plastic, 2015,44(4):6-12.
[9] 周旋, 武永刚, 李娟, 等. 聚乳酸阻燃改性研究进展[J]. 工程塑料应用, 2012,40(8):98-103.
ZHOU Xuan, WU Yonggang, LI Juan, et al. Research progress on flame retardance modification of poly(lactic acid)[J]. Engineering Plastics Application, 2012,40(8):98-103.
[10] PRICE D, PYRAH K, HULL T R, et al. Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach[J]. Polymer Degradation & Stability, 2001,74(3):441-447.
[11] FANG Keyi, LI Juan, KE Chenhao, et al. Synergistic effect between a novel hyperbranched flame retardant and melamine pyrophosphate on the char forming of polyamide 6[J]. Journal of Macromolecular Science: Part D-Reviews in Polymer Processing, 2010,49(14):1489-1497.
[12] CHANG S J, CHANG F C. Characterizations for blends of phosphorus-containing copolyesters with poly (ethylene terephthalate)[J]. Polym Eng Sci, 1998,38(9):1471-1481.
[13] WANG C S, LIN C H. Synjournal and properties of phosphorus containing advanced epoxy resins[J]. Journal of Applied Polymer Science, 2015,75(3):429-436.
[14] ZHANG W, LI X, GUO X, et al. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites[J]. Polymer Degradation & Stability, 2010,95(12):2541-2546.
[15] CHENG X W, GUAN J P, TANG R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016,124:114-119.
[16] 张玉梅. 聚酯熔体直纺超细旦长丝POY可纺性研究[D]. 天津:天津大学, 2012: 10-19.
ZHANG Yumei. Study on spinnability of polyethylene terephthalate microfilaments pre-oriented yarn by direct melt spinning[D]. Tianjin: Tianjin University, 2012: 10-19.
[17] 魏丽菲, 朱志国, 靳昕怡, 等. 基于三(2-羟乙基)异氰尿酸酯的膨胀型阻燃剂对聚合物燃烧性能的影响[J]. 纺织学报, 2017,38(9):24-31.
WEI Lifei, ZHU Zhiguo, JIN Xinyi, et al. Influence of tris (2-hydroxyethyl) isocyanurate-based intumescent flame retardants on combustion performance of polymers[J]. Journal of Textile Research, 2017,38(9):24-31.
[18] 刘淑强, 张蕊萍, 贾虎生, 等. 可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012,33(11):11-14.
LIU Shuqiang, ZHANG Ruiping, JIA Husheng, et al. Melt spinning process of biodegradable PLA filaments[J]. Journal of Textile Research, 2012,33(11):11-14.
[19] 俞建勇, 赵恒迎, 程隆棣. 新型绿色环保纤维: 聚乳酸纤维性能及其应用[J]. 纺织导报, 2003(3):63-66.
YU Jianyong, ZHAO Hengying, CHENG Longdi. New green environmental fiber: polylactic acid fiber performance and its application[J]. China Textile Leader, 2003(3):63-66.
[20] 王亚丽, 周微伟. 熔融纺丝法中聚乳酸切片干燥工艺探讨[J]. 天津纺织科技, 2009(4):11-14.
WANG Yali, ZHOU Weiwei. Discussion on drying process of polylactic acid slices in melt spinning[J]. Tianjin Textile Science & Technology, 2009(4):11-14.
[1] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[2] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[3] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[4] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[5] 李强林, 黄方千, 肖秀婵, 邱诚, 吴菊珍. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019, 40(04): 177-184.
[6] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
[7] 黄廷健 牟浩 阳知乾 任红檠 徐建军 刘鹏清. 高强高模聚甲醛纤维的制备及其性能[J]. 纺织学报, 2018, 39(10): 1-6.
[8] 刘婷 张安莹 王锐 董振峰 朱志国 王照颖. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能 [J]. 纺织学报, 2018, 39(09): 8-14.
[9] 邓继勇 柳芊 董新理 汪南方. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101.
[10] 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100.
[11] 朱斐超 韩建 于斌 余洁 欧璐. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016, 37(2): 21-26.
[12] 梁必超 韩春艳 季轩 魏青 赵炯心 王建庆. 聚酯/聚酰胺共聚纤维的结构及其理化性能[J]. 纺织学报, 2016, 37(11): 1-7.
[13] 杜兆芳 张利玲 许云辉 董丹丹. 氧化竹浆纤维的丝素蛋白改性工艺研究[J]. 纺织学报, 2016, 37(08): 12-15.
[14] 刘婵 谢春萍 刘新金 曲华洋 徐伯俊. 黑牦牛绒氧化脱色工艺优化及其可纺性[J]. 纺织学报, 2016, 37(07): 49-54.
[15] 王志伟 齐鲁. 采用1-膦酸丙烷-1,2-二羧酸的羽绒纤维阻燃改性[J]. 纺织学报, 2015, 36(10): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!