纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 86-92.doi: 10.13475/j.fzxb.20181107107

• 染整与化学品 • 上一篇    下一篇

涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能

徐林1,2,3, 任煜1,2(), 张红阳1,2, 吴双全2, 李雅2, 丁志荣1, 蒋文雯1, 徐思峻1, 臧传锋1   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.旷达科技集团股份有限公司, 江苏 常州 213162
    3.烟台泰普龙先进制造技术有限公司, 山东 烟台 264006
  • 收稿日期:2018-11-29 修回日期:2019-09-05 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 任煜
  • 作者简介:徐林(1992—),男,硕士。主要研究方向为纤维材料的功能化改性。
  • 基金资助:
    国家自然科学基金项目(51703098);内蒙古自治区科技重大专项(zdzx2018060);江苏省博士后科研资助计划项目(1701005C);南通市科技项目(GY12016051)

Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface

XU Lin1,2,3, REN Yu1,2(), ZHANG Hongyang1,2, WU Shuangquan2, LI Ya2, DING Zhirong1, JIANG Wenwen1, XU Sijun1, ZANG Chuanfeng1   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Kuangda Technology Group Co., Ltd., Changzhou, Jiangsu 213162, China
    3. Yantai TAPARAN Advanced Manufacturing Technology Co., Ltd., Yantai, Shandong 264006, China
  • Received:2018-11-29 Revised:2019-09-05 Online:2019-12-15 Published:2019-12-18
  • Contact: REN Yu

摘要:

为制备具有拒水、拒油、抗紫外线功能的涤纶织物,以钛酸四丁酯为前驱体,采用溶胶-水热法在涤纶织物表面原位生成纳米TiO2,然后采用氟硅烷(1H,1H,2H,2H-全氟辛基三乙氧基硅烷)对其进行低表面能修饰。分析了涤纶表面形貌、结晶结构和表面化学成分、表面润湿性能的变化,并对修饰后织物的拒油等级和抗紫外线性能进行测试。结果表明:整理后涤纶织物表面生成锐钛矿型TiO2,氟硅烷均匀沉积在纤维表面;TiO2-氟硅烷联合整理后涤纶织物的拒水拒油性能显著提升,其表面水接触角达153°,拒油等级达到6级;对紫外线A段和B段的平均透光率分别下降至0.37%和0.01%。

关键词: TiO2, 涤纶织物, 氟硅烷, 超疏水性能, 抗紫外线性能, 功能纺织品

Abstract:

In order to develop polyester fabrics with water repellent, antifouling and ultraviolet resistant properties, nano-titania was formed in-situ on the polyester fabric surface by sol-hydrothermal method using tetrabutyl titanate as precursor, and then subjected to low surface energy modification by fluorosi-lane (1H,1H,2H,2H-perfluorooctyltriethoxysilane). The surface morphology, crystalline structure, surface chemical composition and surface wettability of polyester fabrics were analyzed, and the oil resistance and ultraviolet resistance of the treated polyester fabrics were tested. The results show that anatase phase titania is formed in-situ on the surface of polyester fabric, and fluorosilane is uniformly deposited on the fibers after the treatment. The water-repellent and oil-repellent properties of polyester fabrics treated with titania-fluorosilane are significantly improved. The surface water contact angle reaches 153°, and the oil-repellent grade reaches 6 grades. The average ultraviolet transmittance of ultraviolet A and ultraviolet B segments decreases to 0.37% and 0.01%, respectively.

Key words: TiO2, polyester fabric, fluorosilane, superhydrophobicity property, ultraviolet resistance, functional textiles

中图分类号: 

  • O614

表1

TiO2 溶胶生成原料体积比"

方案编号 去离子水、钛酸四丁酯和无水乙醇体积比
1 5∶3∶30
2 10∶3∶30
3 15∶3∶30
4 20∶3∶30

图1

纳米TiO2-氟硅烷复合整理涤纶织物流程图"

图2

TiO2溶胶及纳米TiO2-氟硅烷复合整理前后涤纶织物的XRD图"

图3

纳米TiO2和氟硅烷整理前后涤纶扫描电镜照片(×10 000)"

表2

涤纶表面相对元素质量分数"

试样名称 C O Ti F Si
涤纶织物原样 64.68 35.32
纳米TiO2整理织物 57.59 30.09 12.32
纳米TiO2-氟硅烷整理织物 54.51 30.64 11.38 3.11 0.36

图4

纳米TiO2-氟硅烷复合整理后涤纶织物表面元素分布"

图5

涤纶原样及纳米TiO2-氟硅烷整理后织物红外光谱图"

图6

氟硅烷质量分数对纳米TiO2-氟硅烷复合整理涤纶织物表面水接触角的影响"

表3

纳米TiO2-氟硅烷整理涤纶织物对碳氢化合物的接触角及润湿时间"

碳氢化合物名称 接触角/(°) 润湿时间/s
正十六烷 132 >120
正十四烷 129 >120
正十二烷 125 >120
正癸烷 124 55
正辛烷 106 16

图7

涤纶织物耐污试验"

图8

涤纶织物抗紫外性能"

表4

纳米TiO2-氟硅烷整理涤纶织物的抗紫外线性能"

试样名称 紫外线A段
透光率/%
紫外线B段
透光率/%
UPF
涤纶织物原样 2.98 0.23 37.6
纳米TiO2整理涤纶织物 0.55 0.02 42.3
纳米TiO2-氟硅烷整理涤纶织物 0.37 0.01 43.9
[1] 王晓娜, 张银, 任煜. 空气等离子体处理对涤纶非织造布表面亲水性的影响[J]. 合成纤维工业, 2016,39(4):24-27.
WANG Xiaona, ZHANG Yin, REN Yu. Effect of air plasma treatment on hydrophilic property of polyester nonwoven fabrics[J]. China Synthetic Fiber Industry, 2016,39(4):24-27.
[2] ALPAY H R. Assessing reflectance and color differences of cotton fabrics after abrasion[J]. Textile Research Journal, 2005,75(4):357-361.
[3] 张圣易, 丁志荣, 杨艳艳. 蒸镀超疏水涤纶织物的制备及其疏水性能[J]. 纺织学报, 2017,38(4):85-90.
ZHANG Shengyi, DING Zhirong, YANG Yanyan. Preparation and properties of super-hydrophobic polyester fabric by vacuum evaporation[J]. Journal of Textile Research, 2017,38(4):85-90.
[4] 徐林, 任煜, 张红阳, 等. 碱减量-氟硅烷处理涤纶织物的拒水拒油性[J]. 印染, 2017(18):1-4.
XU Lin, REN Yu, ZHANG Hongyang, et al. Water- and oil-repellency of polyester fabrics after alkali deweighting-fluoroalkyl silanes treatment[J]. China Dyeing & Finishing, 2017(18):1-4.
[5] ALEXANDER S, EASTOE J, LORD A, et al. Branched hydrocarbon low surface energy materials (LSEMs) for superhydrophobic nanoparticle derived surfaces[J]. Acs Applied Materials & Interfaces, 2016,8(1):660-667.
doi: 10.1021/acsami.5b09784 pmid: 26641156
[6] 袁晓雨, 李伟, 朱振国, 等. 超疏水聚酯滤布的性能及其在油水分离中的应用[J]. 纺织学报, 2017,38(3):108-113.
YUAN Xiaoyu, LI Wei, ZHU Zhenguo, et al. Performance of superhydrophobic polyester filter cloth and its application in oil /water separation[J]. Journal of Textile Research, 2017,38(3):108-113.
[7] 张芳, 邱建伟, 陈衍夏, 等. 可见光响应型TiO2光催化材料的制备及应用[J]. 印染, 2011,37(21):10-13.
ZHANG Fang, QIU Jianwei, CHEN Yanxia, et al. Synjournal and application of visible light responding TiO2 photocatalyst[J]. China Dyeing & Finishing, 2011,37(21):10-13.
[8] 杨梓薇, 周顺利, 王锐, 等. 纳米二氧化钛负载棉织物的制备及性能[J]. 高等学校化学学报, 2017,38(10):1880-1887.
YANG Ziwei, ZHOU Shunli, WANG Rui, et al. Preparation and characterization of self-cleaning cotton fabric[J]. Chemical Journal of Chinese Universities, 2017,38(10):1880-1887.
[9] 贾国强, 霍瑞亭, 李文君. 光催化自清洁涂层纺织品的制备[J]. 纺织学报, 2017,38(5):93-97.
JIA Guoqiang, HUO Ruiting, LI Wenjun. Preparation of photo-catalysis self-cleaning coating fabrics[J]. Journal of Textile Research, 2017,38(5):93-97.
[10] HAFIZAH N, SOPYAN I. Nanosized TiO2 photocatalyst powder via sol-gel method: effect of hydrolysis degree on powder properties[J]. International Journal of Photoenergy, 2009(6):207-216.
[11] JUENGSUWATTANANON K, JAROENWORALUCK A, PANYATHANMAPORN T, et al. Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method[J]. Physica Status Solidi A: Applications and Materials Science, 2007,204(6):1751-1756.
[12] 李蕊, 孙奇, 王海霞, 等. pH值对钛酸四丁酯水解产物的影响[J]. 山东陶瓷, 2010,33(4):32-39.
LI Rui, SUN Qi, WANG Haixia, et al. Influence of pH value on the hydrolysis product of tetrabutyl titanate[J]. Shandong Ceramics, 2010,33(4):32-39.
[13] MAHDI E M, HAMDI M, YUSOFF M, et al. XRD and EDXRF analysis of anatase nano-TiO2 synthesized from mineral precursors[J]. Advanced Materials Research, 2013,620:179-185.
[14] MORITZ N, AREVA S, WOLKE J, et al. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment[J]. Biomaterials, 2005,26(21):4460-4467.
pmid: 15701375
[15] FRONTISTIS Z, DROSOU C, TYROVOLA K, et al. Experimental and modeling studies of the degradation of estrogen hormones in aqueous TiO2, suspensions under simulated solar radiation[J]. Industrial & Engineering Chemistry Research, 2012,51:16552-16563.
[16] KALE B M, WIENER J, MILITKY J, et al. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness[J]. Carbohydrate Polymers, 2016,150:107-113.
doi: 10.1016/j.carbpol.2016.05.006 pmid: 27312619
[17] AZFARNIAM L, NOROUZI M. Multifunctional polyester fabric using a multicomponent treatment[J]. Fibers & Polymers, 2016,17(2):298-304.
[18] GAMINIAN H, MONTAZER M. Simultaneous nano TiO2 sensitization, application and stabilization on polyester fabric using madder and NaOH producing enhanced self-cleaning with hydrophilic properties under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017,332:158-166.
[19] 杨亚玲, 张杨杨, 刘金鑫, 等. 涤纶织物负载二氧化钛的方法及影响因素[J]. 印染助剂, 2017,34(9):18-22.
YANG Yaling, ZHANG Yangyang, LIU Jinxin, et al. Method and influence factors of polyester fabric loaded titanium dioxide[J]. Textile Auxiliaries, 2017,34(9):18-22.
[20] 梁慧, 张光先, 张凤秀, 等. 紫外线-纳米二氧化钛改性高亲水涤纶织物的制备[J]. 纺织学报, 2013,34(3):82-86.
LIANG Hui, ZHANG Guangxian, ZHANG Fengxiu, et al. Preparation of highly hydrophibic polyester fabrics via UV irradiation/nano-TiO2 modification[J]. Journal of Textile Research, 2013,34(3):82-86.
[21] 薛朝华, 张平, 姬鹏婷, 等. TiO2/SiO2核壳结构微粒的合成及超疏水防紫外线功能织物的制备[J]. 陕西科技大学学报, 2013,31(6):45-50.
XUE Chaohua, ZHANG Ping, JI Penting, et al. Preparation of TiO2/SiO2 core-shell particles and their coating on fibers for superhydrophobic textiles with UV-shielding property[J]. Journal of Shaanxi University of Science Technology, 2013,31(6):45-50.
[22] MAN C Z, ZHANG C M, LIU Y M, et al. Poly (lactic acid)/titanium dioxide composites: preparation and performance under ultraviolet irradiation[J]. Polymer Degradation and Stability, 2012,97(6):856-862.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/ 棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[3] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[4] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[5] 王森, 陈英. 纳米TiO2 稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[6] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[7] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[10] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[11] 戴悦, 张瑞萍, 王秋萍, 胡亚楠, 张贤国. 柠檬酸/β-环糊精整理涤纶织物的消臭效果[J]. 纺织学报, 2019, 40(12): 104-108.
[12] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[13] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[14] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
[15] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!