纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 1-8.doi: 10.13475/j.fzxb.20181202008
• 纤维材料 • 下一篇
摘要:
为探索烟梗浆二醋酸纤维素(CDA)制备的可行性及其可纺性,以醋酸为溶剂,浓硫酸为催化剂,采用低温乙酰化法制备了烟梗木浆三醋酸纤维素(CTA)和二醋酸纤维素,将二醋酸纤维素与市售二醋酸纤维素按质量比20∶80、35∶65、50∶50共混,通过静电纺丝技术进行纺丝,并对纤维的结构和性能进行表征。结果表明:反应时间为5 h,纸浆与乙酸固液比为1∶5,在活化过程中加入硫酸后,醋酸纤维素的取代度从2.68提高到2.86,达到了三醋酸纤维素的标准;在80 ℃时水解6 h后可得到取代度约为2.5的CDA;与纯纺CDA纤维得到的亚微米混纺纤维相比,烟梗浆二醋酸纤维素与市售二醋酸纤维素混纺纤维的线密度及其不匀率降低,表明了烟梗浆CDA混纺的可行性。
中图分类号:
[1] |
QIN Zuodong, SUN Mingxing, LUO Xiaofang, et al. Life-cycle assessment of tobacco stalk utilization[J]. Bioresource Technology, 2018,265:119-121.
pmid: 29885497 |
[2] | WANG Yajing, BI Yuyun, GAO Chunyu. The assessment and utilization of straw resources in China[J]. Agricultural Sciences in China, 2010,9(12):1807-1815. |
[3] | COSTA C A E, COLEMAN W, DUBE M, et al. Assessment of key features of lignin from lignocellulosic crops: stalks and roots of corn, cotton, sugarcane, and tobacco[J]. Industrial Crops and Products, 2016,92:136-148. |
[4] | AGRUPIS S, MAEKAWA E, SUZUKI K. Industrial utilization of tobacco stalks: II: preparation and characterization of tobacco pulp by steam explosion pulping[J]. Journal of Wood Science, 2000,46(3):222-229. |
[5] | MIJAILOVIC I, RADOJICIC V, ECIM-DJURIC O, et al. Energy potential of tobacco stalks in briquettes and pellets production[J]. Journal of Environmental Protection and Ecology, 2014,15(3):1034-1041. |
[6] | SAKA S, MATSUMURA H. Wood pulp manufacturing and quality characteristics[J]. Macromolecular Symposia, 2004,208:37-48. |
[7] | SHAKHES J, MARANDI M A B, ZEINALY F, et al. Tobacco residuals as promising lignocellulosic materials for pulp and paper industry[J]. Bioresources, 2011,6(4):4481-4493. |
[8] | SAIM Ates, DENIZ Ilhan, KIRCI Huseyin, et al. Comparison of pulping and bleaching behaviors of some agricultural residues[J]. Turkish Journal of Agriculture and Forestry, 2015,39(1):144-153. |
[9] | AGRUPIS S C, MAEKAWA E. Industrial utilization of tobacco stalks: Ⅰ: preliminary evaluation for biomass resources[J]. Holzforschung, 1999,53(1):29-32. |
[10] | WATANABE T, OYA S. Cellulose acylate, cellulose acylate film, and method for production and use thereof: US20060222786A1 [P]. 2006-02-01. |
[11] | MITCHELL M G, GERMROTH T C, JOHNSON G I, et al. Process for acetylation of cellulose, WO1994003497A1 [P]. 1994-02-17. |
[12] | KARSTENS T, HERMANUTZ F. Method for producing cellulose acetate:WO1998041543A1 [P]. 1997-03-19. |
[13] |
ABUSHAMMALA Hatem, HETTEGGER Hubert, BACHER Markus, et al. On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2: the impact of lignin on the kinetics of cellulose acetyla-tion[J]. Cellulose, 2017,24(7):2767-2774.
doi: 10.1007/s10570-017-1322-x |
[14] |
KOWHAKUL Wasana, SHIBAHARA Hiroki, MASAMOTO Hiroshi, et al. Dust explosion characteristics of cellulose ethers and cellulose acetates with various degrees of acetylation[J]. Journal of Loss Prevention in the Process Industries, 2016,44:544-550.
doi: 10.1016/j.jlp.2016.07.018 |
[15] | SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass[J]. Laboratory Analytical Procedure, 2008,1617:1-16. |
[16] |
BEGUIN Pierre. Molecular biology of cellulose degradation[J]. Annual Reviews in Microbiology, 1990,44(1):219-248.
doi: 10.1146/annurev.mi.44.100190.001251 |
[17] |
NEAL J L. Factors affecting the solution properties of cellulose acetate[J]. Journal of Applied Polymer Science, 1965,9(3):947-961.
doi: 10.1002/app.1965.070090313 |
[18] |
ZHAO L F, YUAN Z Y, KAPU N S, et al. Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp[J]. Bioresource Technology, 2017,223:40-46.
doi: 10.1016/j.biortech.2016.10.034 pmid: 27788428 |
[1] | 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[2] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[3] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[4] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[5] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
[6] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[7] | 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182. |
[8] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[9] | 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19. |
[10] | 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14. |
[11] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[12] | 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32. |
[13] | 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25. |
[14] | 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25. |
[15] | 刘宇健, 谭晶, 陈明军, 余韶阳, 李好义, 杨卫民. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(02): 165-171. |
|