纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 184-189.doi: 10.13475/j.fzxb.20181204506

• 综合述评 • 上一篇    下一篇

芳香族聚酰胺纳米纤维复合材料研究进展

赵颖会, 顾迎春, 胡斐, 林佳友, 叶蓝琳, 李静静, 陈胜()   

  1. 四川大学 轻工科学与工程学院, 四川 成都 610025
  • 收稿日期:2018-12-21 修回日期:2019-10-16 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 陈胜
  • 作者简介:赵颖会(1992—),女,硕士生。主要研究方向为纤维材料的结构与性能。
  • 基金资助:
    四川省科技计划项目(2017GZ0429);国家级大学生创新创业训练计划项目(201710610167)

Progress review on research of aromatic polyamide nanofiber composites

ZHAO Yinghui, GU Yingchun, HU Fei, LIN Jiayou, YE Lanlin, LI Jingjing, CHEN Sheng()   

  1. College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610025, China
  • Received:2018-12-21 Revised:2019-10-16 Online:2020-01-15 Published:2020-01-14
  • Contact: CHEN Sheng

摘要:

为更好地了解芳香族聚酰胺纳米纤维的研究现状,总结了近年来芳香族聚酰胺纳米纤维的制备方法,包括去质子化法,静电纺丝法以及自组装合成法。重点评述了基于芳香族聚酰胺纳米纤维复合材料的制备方法及其独特性能,其中特别关注了芳香族聚酰胺纳米纤维复合材料在超级电容器电极材料、锂离子电池隔膜材料、过滤膜材料以及纤维增强复合材料等领域的研究进展。相关研究为实现这类新型纳米复合材料的可控制备和结构调控提供理论参考。最后提出芳香族聚酰胺纳米纤维复合材料目前存在的挑战,认为芳香族聚酰胺纳米纤维材料作为新型的纳米“建筑模块”有很好的发展前景。

关键词: 芳香族聚酰胺, 纳米纤维, 去质子化法, 电极材料, 纤维增强复合材料

Abstract:

In order to better understand the state-of-the-art in developing aromatic polyamide nanofibers, this paper summarizes the preparation methods for making aromatic polyamide nanofibers, including deprotonation, electrospinning and self-assembly synthesis. Focusing on the research in aromatic polyamide nanofibers composites for supercapacitor electrode materials, lithium ion battery separator materials, filter membrane materials and fiber reinforcement materials, this paper mainly scrutinizes the preparation methods and reviews the unique properties of aromatic polyamide nanofiber composites. Relevant research in this area has provided the theoretical basis for achieving the controllable preparation and structural modulation of these nanocomposites. Finally, the challenges of aromatic polyamide nanofiber composites were spelt out, and it was concluded that aromatic polyamide nanofibers have a good development prospect as novel nanoscale ″building blocks″.

Key words: aromatic polyamide, nanofiber, deprotonation method, electrode material, fiber reinforced composite

中图分类号: 

  • TQ342.72

图1

芳香族聚酰胺纳米纤维的去质子化机制图"

[1] KAPOOR R, PANGENI L, BANDARU A K, et al. High strain rate compression response of woven Kevlar reinforced polypropylene composites[J]. Composites Part B: Engineering, 2016,89:374-382.
doi: 10.1016/j.compositesb.2015.11.044
[2] 孙鑫, 霍康伟, 支景鹏, 等. 碳纳米管/芳纶纤维复合增强PVC材料的性能研究[J]. 现代塑料加工应用, 2018,30(1):13-15.
SUN Xin, HUO Kangwei, ZHI Jingpeng, et al. Properties of carbon nanotube/aramid fiber composite reinforced PVC materials[J]. Modern Plastics Processing Applications, 2018,30(1):13-15.
[3] HE X, QU Y, PENG J, et al. A novel botryoidal aramid fiber reinforcement of a PMMA resin for a restorative biomaterial[J]. Biomaterials Science, 2017,5(4):808-816.
pmid: 28275764
[4] YUE L Y, LI W, ZU X D, et al. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration[J]. MATEC Web of Conferences, 2016,39:01012-01017.
doi: 10.1051/matecconf/20163901012
[5] CHENG Z, HAN Y, LUO L, et al. Grafting degradable coordination polymer on aramid fiber surface to improve its interfacial properties[J]. Materials Letters, 2018,233:102-106.
doi: 10.1016/j.matlet.2018.08.134
[6] QI G, ZHANG B, DU S, et al. Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure[J]. Composite Structures, 2017,167:1-10.
doi: 10.1016/j.compstruct.2017.01.047
[7] 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):11-19.
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid by phosphorylation[J]. Journal of Textile Research, 2015,36(11):11-19.
[8] WU S R, SHEU G S, SHYU S S, et al. Kevlar fiber-epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment[J]. Journal of Applied Polymer Science, 1996,62(9):1347-1360.
doi: 10.1002/(ISSN)1097-4628
[9] 严志云, 石虹桥, 刘安华, 等. 低温等离子体改性芳纶表面的XPS分析[J]. 纺织学报, 2007,28(8):19-22.
YAN Zhiyun, SHI Hongqiao, LIU Anhua, et al. XPS analysis of low-temperature plasma-modified aramid fiber surface[J]. Journal of Textile Research, 2007,28(8):19-22.
[10] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011,5(9):6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[11] LI J, TIAN W, YAN H, et al. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery[J]. Journal of Applied Polymer Science, 2016,133(30):43623-43631.
[12] LYU J, ZGAO X, HOU X, et al. Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite[J]. Composites Science & Technology, 2017,149:159-165.
[13] TAKAYANAGI M, KATAYOSE T. N-substituted poly(p-phenylene terephthalamide)[J]. Journal of Polymer Science Part A Polymer Chemistry, 1981,19(5):1133-1145
[14] BUECH R R, SWEENY W, SCHMIDT H W, et al. Preparation of aromatic polyamide polyanions: a novel processing strategy for aromatic polyamides[J]. Macromolecules, 1990,23(4):1065-1072.
doi: 10.1021/ma00206a026
[15] YAO J, JIN J, LEPORE E, et al. Electrospinning of p-aramid fibers[J]. Macromolecular Materials & Engineering, 2016,300(12):1238-1245.
[16] YEAGER M P, HOFFMAN C M, XIA Z, et al. Method for the synjournal of para-aramid nanofibers[J]. Journal of Applied Polymer Science, 2016,133(42):44082-44090.
[17] YAN H, LI J, TIAN W, et al. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers[J]. RSC Advances, 2016,6(32):26599-26605.
doi: 10.1039/C6RA01602B
[18] KWON S R, ELINSKI M, BATTEAS J D, et al. Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes[J]. ACS Applied Materials & Interfaces, 2017,9:17124-17135
[19] FAN J, SHI Z, TIAN M, et al. Graphene/aramid nanofiber nanocomposite paper with high mechanical and electrical performances[J]. RSC Advances, 2013,3(39):17664-17667.
doi: 10.1039/c3ra42515k
[20] KWON S R, HARRIS J, ZHOU T, et al. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power[J]. ACS Nano, 2017,11(7):6682-6690.
pmid: 28682590
[21] LI Y, REN G, ZHANG Z, et al. A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability[J]. Journal of Materials Chemistry A, 2016(4):17324-17332.
[22] HU S, LIN S, TU Y, et al. Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries[J]. Journal of Materials Chemistry A, 2016,4(9):3513-3526.
doi: 10.1039/C5TA08694A
[23] TUNG S O, HO S, YANG M, et al. A dendrite-suppressing composite ion conductor from aramid nanofibers[J]. Nature Communications, 2015,6:6152-6159.
doi: 10.1038/ncomms7152 pmid: 25626170
[24] TUNG S O, THOMPSON L T, LARAMIE S, et al. Nanoporous aramid nanofiber separators for non-aqueous redox flow batteries[J]. Nature Communications, 2018,9:4193.
doi: 10.1038/s41467-018-05752-x pmid: 30305636
[25] 袁永强. 芳纶纳米纤维的制备及其在液体过滤中的应用[D]. 苏州:苏州大学, 2016:2-30.
YUAN Yongqiang. Preparation of aramid nanofibers and their application in liquid filtration[D]. Suzhou: Soochow University, 2016:2-30.
[26] YUAN Y Q, LI J, LIU Y, et al. Layer-by-layer self-assembly of aramid nanofibers on nonwoven fabric for liquid filtration[J]. Polymer Composites, 2018,39(7):2411-2419.
doi: 10.1002/pc.v39.7
[27] XU L, ZHAO X, XU C, et al. Water-rich biomimetic composites with abiotic self-organizing nanofiber network[J]. Advanced Materials, 2018,30(1):1703343-1703349
doi: 10.1002/adma.201703343
[28] WANG F, WU Y, HUANG Y, et al. Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane[J]. Composites Part A: Applied Science and Manufacturing, 2018,110:126-132.
doi: 10.1016/j.compositesa.2018.04.023
[29] LV L, HAN X, ZONG L, et al. Biomimetic hybridization of kevlar into silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes[J]. ACS Nano, 2017,11(8):8178-8184.
doi: 10.1021/acsnano.7b03119 pmid: 28723068
[30] KUANG Q, ZHANG D, YU J C, et al. Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers[J]. The Journal of Physical Chemistry C, 2015,119(49):27467-27477.
doi: 10.1021/acs.jpcc.5b08856
[31] GUAN Y, LI W, ZHANG Y, et al. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions[J]. Composites Science and Technology, 2017,144:193-201.
doi: 10.1016/j.compscitech.2017.03.010
[32] 顾云智, 黄振祝, 林树东, 等. 芳纶纳米纤维增强聚乙烯醇复合膜的制备与性能[J]. 精细化工, 2018,35(8):1288-1293.
GU Yunzhi, HUANG Zhenzhu, LIN Shudong, et al. Preparation and properties of aramid nanofibers reinforced polyvinyl alcohol composite membrane[J]. Fine Chemical Industry, 2018,35(8):1288-1293.
[33] LIN J, BANG S H, MALAKOOTI M H, et al. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2017,9(12):11167-11175.
pmid: 28267314
[34] WANG F, WU Y, HUANG Y, et al. High strength, thermostable and fast-drying hybrid transparent membranes with POSS nanoparticles aligned on aramid nanofibers[J]. Composites Part A: Applied Science and Manufacturing, 2018,110:154-161.
doi: 10.1016/j.compositesa.2018.04.031
[35] YANG M, CAO K, YEOM B, et al. Aramid nanofiber-reinforced transparent nanocomposites[J]. Journal of Composite Materials, 2015,49(15):1873-1879.
doi: 10.1177/0021998315579230
[36] FAN J, SHI Z, ZHANG L, et al. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement[J]. Nanoscale 2012,4(22):7046-7055.
doi: 10.1039/c2nr31907a
[37] 范金辰. 石墨烯的制备与功能化及其在复合材料中的应用研究[D]. 上海:上海交通大学, 2014:6-15.
FAN Jinchen. Preparation and functionalization of graphene and its application in composite materials[D]. Shanghai: Shanghai Jiaotong University, 2014:6-15.
[38] CAO W, YANG L, QI X, et al. Carbon nanotube wires sheathed by aramid nanofibers[J]. Advanced Functional Materials, 2017,27(34):1701061-1901072.
doi: 10.1002/adfm.v27.34
[39] PARK B, LEE W, LEE E, et al. Highly tunable interfacial adhesion of glass fiber by hybrid multilayers of graphene oxide and aramid nanofiber[J]. ACS Applied Materials & Interfaces, 2015,7(5):3329-3334.
pmid: 25599567
[40] LEE J U, PARK B, KIM B S, et al. Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content[J]. Composites Part A: Applied Science & Manufacturing, 2016,84:482-489.
[41] IIJIMA M, KAMIYA H. Non-aqueous colloidal processing route for fabrication of highly dispersed aramid nanofibers attached with Ag nanoparticles and their stability in epoxy matrixes[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2015,482:195-202.
[42] LI J, FAN J, LIAO K, et al. Facile fabrication of multifunctional aramid nanofiber-based composite paper[J]. RSC Advances, 2016,6(93):90263-90272.
doi: 10.1039/C6RA15895A
[43] LYU J, WANG X, LIU L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016,26(46):8435-8445.
doi: 10.1002/adfm.v26.46
[1] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[2] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/ 羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[3] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[6] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[7] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[8] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[9] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[10] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[11] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[12] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[13] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[14] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[15] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!