纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 118-123.doi: 10.13475/j.fzxb.20190100606
QIU Hao1, SU Yun1,2, WANG Yunyi1,2,3()
摘要:
为评价蒸汽压力、蒸汽与人体相对距离等条件对织物中热湿传递的作用规律,在蒸汽暴露条件下,测量不同蒸汽压力与喷射距离时织物的热防护性能,分析织物内储水量、蒸汽渗透量与热防护性能之间的关系,并探究蒸汽压力对储水量、渗透量的影响规律。结果表明:蒸汽暴露条件下,增大蒸汽压力与减少喷射距离能够降低织物的隔热性能,明显影响织物蒸汽热防护性能;织物透气性与皮肤二级烧伤时间呈显著负相关关系;另外,储水量、渗透量与蒸汽压力呈现正相关,且分别与织物的回潮率和透气性呈现正相关;降低水分吸收和减少蒸汽渗透是提高织物热防护性能的重要因素。
中图分类号:
[1] | YU S, STRCKFADEN M, CROWN B, et al. Garment specifications and mock-ups for protection from steam and hot water[J]. Journal of Astm International, 2012(1544):290-307. |
[2] |
SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety & Ergonomics Jose, 2008,14(1):29-41.
doi: 10.1080/10803548.2008.11076748 pmid: 18394324 |
[3] | MANDAL S, SONG G, GHOLAMREZA F. A novel protocol to characterize the thermal protective performance of fabrics in hot-water exposure[J]. Journal of Industrial Textiles, 2015,46(1):279-291. |
[4] | WANG M, LI X, LI J, et al. A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure[J]. Textile Research Journal, 2016,86(6):580-592. |
[5] | CHAKRABORTY S. Thermal protective performance of clothing exposed to radiant heat[J]. Journal of the Textile Institute, 2015,106(12):1388-1393. |
[6] |
ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety & Ergonomics Jose, 2004,10(3):239-245.
pmid: 15377408 |
[7] |
DESRUELLE A V, SCHMID B. The steam laboratory of the institut de médecine navale du service de santé des armées: a set of tools in the service of the French navy[J]. European Journal of Applied Physiology, 2004,92(6):630-635.
pmid: 15205957 |
[8] | SUMIT M, SONG G. Characterization of protective textile material for thermal hazard [C]//Proceedings of Fiber Society 2011 spring conference. Hong Kong:[s.n.], 2011: 23-25. |
[9] | SU Y, LI J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure[J]. Journal of Industrial Textiles, 2016,47(5):853-869. |
[10] | SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers & Polymers, 2017,18(3):582-589. |
[11] | SU Y, LI J. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J]. Measurement Science & Technology, 2016,27(12):1-9. |
[12] | ABBOTT N J, SCHULMAN S. Protection from fire: nonflammable fabrics and coatings[J]. Journal of Industrial Textiles, 1976,6(1):48-64. |
[13] | ORTEGA J, LEWIS J P, SANKEY O F. First principles simulations of fluid water: the radial distribution functions[J]. Journal of Chemical Physics, 1997,106(9):3696-3702. |
[14] |
OLDERMAN G M. Liquid repellency and surgical fabric barrier properties[J]. Engineering in Medicine, 1984,13(1):35-43.
doi: 10.1243/emed_jour_1984_013_009_02 pmid: 6538521 |
[15] | BARKAR R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006,76(1):27-31. |
[16] | SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000,70(7):567-573. |
[17] | HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016,86(3):235-244. |
[1] | 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58. |
[2] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[3] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
[4] | 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117. |
[5] | 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122. |
[6] | 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113. |
[7] | 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144. |
[8] | 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138. |
[9] | 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152. |
[10] | 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104. |
[11] | 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118. |
[12] | 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156. |
[13] | 苏云 李俊. 火灾环境下防水透气层对消防服热湿防护性能的影响[J]. 纺织学报, 2017, 38(02): 152-158. |
[14] | 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176. |
[15] | 马春杰 崔志英 . 光湿复合老化对消防服用织物性能的影响[J]. 纺织学报, 2015, 36(09): 82-88. |
|