纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 96-101.doi: 10.13475/j.fzxb.20190105006

• 染整与化学品 • 上一篇    下一篇

二氧化锰/石墨烯/棉织物复合电极的制备及其电化学性能

李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215021
  • 收稿日期:2019-01-23 修回日期:2019-06-05 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 邢铁玲
  • 作者简介:李育洲(1993—),男,硕士。主要研究方向为可穿戴功能纺织品。
  • 基金资助:
    江苏省六大人才高峰项目(JNHB-066);江苏高校优势学科建设工程资助项目(苏政办发[2018]87号)

Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode

LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2019-01-23 Revised:2019-06-05 Online:2020-01-15 Published:2020-01-14
  • Contact: XING Tieling

摘要:

为研究并增强柔性织物电极的电化学性能,采用改进Hummers法制备得到高浓度氧化石墨烯水溶胶,并通过干涂层法将氧化石墨烯涂覆于棉织物表面,经化学-微波两步还原法还原氧化石墨烯,制备了石墨烯/棉织物。进一步采用电化学沉积法将二氧化锰沉积在石墨烯/棉织物上,得到二氧化锰/石墨烯/棉织物复合电极材料。借助扫描电子显微镜、X射线衍射仪和红外光谱仪对复合电极材料的形貌和结构进行表征。研究结果表明:复合电极材料在0.25 A/g的电流密度下比电容达到490 F/g,1 000次电容放电后电容保持在95.5%,能量密度达到17.01 W·h /kg。

关键词: 石墨烯, 二氧化锰, 棉织物, 复合材料, 电极, 电化学性能

Abstract:

In order to enhance the electrochemical properties of flexible fabric electrodes, high concentration graphene oxide hydrosol was prepared by improved Hummers method, the graphene oxide was then coated onto cotton fabric through an environmentally friendly ″dry-coating″ method, and graphene/cotton fabric was prepared by subsequent ″two-step reduction″ method of chemical-microwave reduction. Then the MnO2/graphene/cotton fabric composite electrode materials were prepared through electrochemical deposition of MnO2 on graphene/cotton fabric material. The morphology and structure of composite electrode materials were characterized by scanning electron microscopy, X-ray diffraction, and infrared spectrum. The results show that the specific capacitance of composite electrode material reaches 490 F/g at current density of 0.25 A/g. After 1 000 capacitance discharges, the capacitance remains at 95.5% and the energy density reaches 17.01 W·h/kg.

Key words: graphene, MnO2, cotton fabric, composite material, electrode, electrochemical property

中图分类号: 

  • TS190.2

图1

不同织物放大不同倍数的SEM照片"

图2

石墨烯/棉织物和MnO2/石墨烯/棉织物XRD谱图"

图3

石墨烯/棉织物和MnO2/石墨烯/棉织物红外光谱图"

图4

MnO2/石墨烯/棉织物复合电极材料的电化学性能"

[1] 巩继贤. 智能服装的现状及展望[J]. 现代纺织技术, 2004,12(1):47-49.
GONG Jixian. Present situation and prospect of intelligent clothing[J]. Advanced Textile Technology, 2004,12(1):47-49.
[2] POST E R, ORTH M, RUSSO P R, et al. E-broidery: design and fabrication of textile-based computing[J]. Ibm Systems Journal, 2000,39(3/4):840-860.
[3] LI Z, ZHANG L, TAN X, et al. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors[J]. Advanced Energy Materials, 2012,2(4):431-437.
[4] WEN Z B, QU Q T, GAO Q, et al. An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin[J]. Electrochemistry Communications, 2009,11(3):715-718.
[5] PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009,4(4):217.
doi: 10.1038/nnano.2009.58 pmid: 19350030
[6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005,438(7065):197-200.
doi: 10.1038/nature04233 pmid: 16281030
[7] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010,48(4):1146-1152.
doi: 10.1016/j.carbon.2009.11.037
[8] 杨玉娟. 纳米二氧化锰的制备及其电容性能研究[D]. 天津:天津大学, 2007:5-8.
YANG Yujuan. Preparation and capacitance properties of nano manganese dioxide[D]. Tianjin: Tianjin University, 2007:5-8.
[9] BEYENE N W, KOTZIAN P, SCHACHL K, et al. (Bio)sensors based on manganese dioxide-modified carbon substrates: retrospections, further improvements and applications[J]. Talanta, 2004,64(5):1151-115912.
doi: 10.1016/j.talanta.2004.03.068
[10] PRASAD K R, MIURA N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors[J]. Journal of Power Sources, 2004,135(1):354-360.
doi: 10.1016/j.jpowsour.2004.04.005
[11] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved Synjournal of Graphene Oxide[J]. ACS NANO, 2010,4(8):4806-4814.
doi: 10.1021/nn1006368 pmid: 20731455
[12] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008,7(11):845-854.
doi: 10.1038/nmat2297 pmid: 18956000
[13] ZHAO L, FAN L Z, ZHOU M Q, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010,22(45):5202-5206.
doi: 10.1002/adma.201002647 pmid: 20862714
[14] HSIEH C T, CHEN W Y, CHENG Y S. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites[J]. Electrochimica Acta, 2010,55(19):5294-5300.
doi: 10.1016/j.electacta.2010.04.085
[15] 王文亮, 李东升, 王继武, 等. 一种新的制备纳米γ-MnO2的方法: 超声辐射氧化还原法[J]. 化学学报, 2004,62(16):1557-1560.
WANG Wenliang, LI Dongsheng, WANG Jiwu, et al. A new method for preparation of nano-gamma-MnO2 by ultrasonic radiation oxidation-reduction[J]. Journal of Chemistry, 2004,62(16):1557-1560.
[1] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[2] 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192.
[3] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[4] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[5] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[6] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[7] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[8] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[9] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[10] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[11] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[12] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[13] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[14] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[15] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!