纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 26-32.doi: 10.13475/j.fzxb.20190202707
吴横1, 金欣1(), 王闻宇2, 朱正涛2,3, 林童2,4, 牛家嵘2
WU Heng1, JIN Xin1(), WANG Wenyu2, ZHU Zhengtao2,3, LIN Tong2,4, NIU Jiarong2
摘要:
为提高聚丙烯腈(PAN)纤维膜的压电性能,将硝酸钠(NaNO3)掺杂到PAN中,利用静电纺丝技术制备了PAN/NaNO3纳米纤维膜。探究了NaNO3用量以及纺丝速度对静电纺PAN纤维膜压电性能的影响。通过扫描电子显微镜、红外光谱仪、X射线衍射仪、驻极体非织造压电性能测试系统以及压电测试仪对PAN/NaNO3纤维膜的表面形貌、构象和压电性能进行表征与测试。结果表明:将NaNO3掺杂到PAN中会导致纤维膜的平面锯齿构象含量增加,晶面间距减小,进而影响PAN纤维膜的压电性能;当NaNO3质量分数为0.9%、纺丝速度为1 000 mm/s时,纤维膜的压电性能明显提高,此时PAN/NaNO3纤维膜中平面锯齿构象含量最多,晶面间距最小,与未掺杂NaNO3的PAN纤维膜相比,此PAN纤维膜压电电压和电流分别提高了40%和174.53%。
中图分类号:
[1] | NAKAMACHI E, UETSUJI Y, KURAMADE H. Process crystallographic simulation for biocompatible piezoelectric material design and generation[J]. Archives of Computational Methods in Engineering, 2013,20(2):155-183. |
[2] | 高悦, 梁永日, 温世鹏, 等. 压电聚偏氟乙烯纳米纤维的应用进展[J]. 高分子材料科学与工程, 2016,32(5):176-181. |
GAO Yue, LIANG Yongri, WEN Shipeng, et al. Progress in the application of piezoelectric polyvinylidene fluoride nanofibers[J]. Polymer Materials Science and Engineering, 2016,32(5):176-181. | |
[3] | KAWAI H. The piezoelectricity of poly (vinylidene fluoride)[J]. Japanese Journal of Applied Physics, 1969,8(7):975-976. |
[4] |
LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016,7.DOI: 10.1038/ncomms11108.
doi: 10.1038/ncomms13755 pmid: 28008906 |
[5] | SHAO H, FANG J, WANG H, et al. Effect of static charges on mechanical-to-electrical energy conversion of electrospun PVDF nanofiber mats[J]. Advanced Materials Letters, 2016,8(4):418-422. |
[6] | FANG J, WANG X, LIN T. Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes[J]. Journal of Materials Chemistry, 2011 (30):11088-11091. |
[7] | UEDA H, CARR S H. Piezoelectricity in polyacrylonitrile[J]. Polymer Journal, 1984,16(9):661-667. |
[8] | 毛梦烨. 无机盐掺杂聚偏氟乙烯纳米发电机的制备[D]. 上海:东华大学, 2014: 35-42. |
MAO Mengye. Preparation of inorganic salt doped polyvinylidene fluoride nanogenerator[D]. Shanghai: Donghua University, 2014: 35-42. | |
[9] | GROBELNY J, SOKOL M, TURSKA E. A study of conformation, configuration and phase structure of polyacrylonitrile and their mutual dependence by means of WAXS and 1H BL-nmr[J]. Polymer, 1984,25(10):1415-1418. |
[10] | RIZZO P, AURIEMMA F, GUERRA G, et al. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile[J]. Macromolecules, 1996,29(27):8852-8861. |
[11] | HOBSON R J, WINDLE A H. Crystalline structure of atactic polyacrylonitrile[J]. Macromolecules, 1993,26(25):6903-6907. |
[12] | MINAGAWA M, MIYANO K, TAKAHASHI M, et al. Infrared characteristic absorption bands of highly isotactic poly (acrylonitrile)[J]. Macromolecules, 1988,21(8):2387-2391. |
[13] | WANG W, ZHENG Y, JIN X, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes[J]. Nano Energy, 2019,56:588-594. |
[14] | 程茂芸. 聚丙烯腈电纺膜制备及其压电性能研究[D]. 天津:天津工业大学, 2017: 16-21. |
CHENG Maoyun. Preparation of polyacrylonitrile electrospun film and piezoelectric properties[D]. Tianjin: Tiangong University, 2017: 16-21. | |
[15] | 赵从涛, 覃小红. 盐对聚丙烯腈静电纺丝的影响[J]. 东华大学学报(自然科学版), 2008,34(1):33-37. |
ZHAO Congtao, QIN Xiaohong. Effect of salt on electrospinning of polyacrylonitrile[J]. Journal of Donghua University(Natural Science Edition), 2008,34(1):33-37. | |
[16] | 张静. 纺丝过程中PAN纤维分子凝聚态结构的转变[D]. 北京:北京化工大学, 2012: 20-25. |
ZHANG Jing. Transformation of PAN fiber molecular condensed structure during spinning[D]. Beijing: Beijing University of Chemical Technology, 2012: 20-25. | |
[17] | DEITZEL J M, KLEINMEYER J, HARRIS D E A, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272. |
[18] | SAWAI D, YAMANE A, TAKAHASHI H, et al. Development of high ductility and tensile properties by a two-stage draw of poly (acrylonitrile): effect of molecular weight[J]. Journal of Polymer Science Part B: Polymer Physics, 1998,36(4):629-640. |
[19] | HU X, JOHNSON D J, TOMKA J G. Molecular modelling of the structure of polyacrylonitrile fibres[J]. Journal of The Textile Institute, 1995,86(2):322-331. |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[11] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[12] | 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22. |
[13] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[14] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[15] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
|