纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 1-6.doi: 10.13475/j.fzxb.20190203806
• 纤维材料 • 下一篇
DANG Danyang1,2, CUI Lingyan1, WANG Liang1(), LIU Yong1
摘要:
针对纤维素纳米纤维(CNF)气凝胶易燃、强力低等问题,利用纳米蒙脱土(MMT)共混改性纤维素纳米纤维,基于冷冻干燥的方法制备阻燃隔热的CNF/MMT复合气凝胶。研究了MMT质量分数对CNF/MMT复合气凝胶形貌结构、压缩性能、热稳定性、热导率和阻燃性能的影响。结果表明:MMT的引入使气凝胶具有更加紧密的片层结构,气凝胶力学性能、热稳定性和阻燃性能得到改善;在MMT质量分数为50%时,CNF/MMT复合气凝胶的表观密度最大且仅为0.016 8 g/cm3,应变为10%的应力最大为12.45 kPa,应变为70%的应力最大为77.93 kPa,导热系数最大为 0.04 W/(m·K); 气凝胶中MMT质量分数不低于42.9%时,复合基气凝胶的极限氧指数得到明显提升。
中图分类号:
[1] |
XU X, LIU F, JIANG L, et al. Cellulose nanocrystals vs.cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents[J]. Applied Materials & Interfaces, 2013,5(8):2999-3009.
doi: 10.1021/am302624t pmid: 23521616 |
[2] |
JONOBI M, HARUN J, MATHEW A P, et al. Mechanicalproperties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010,70:1742-1747.
doi: 10.1016/j.compscitech.2010.07.005 |
[3] |
SULAIMAN S, CIEH N L, MOKHTAR M N, et al. Covalentimmobilization of cyclodextrin glucanotranferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system[J]. Process Biochemistry, 2017,55:85-95.
doi: 10.1016/j.procbio.2017.01.025 |
[4] |
KORHONEN J T, KETTUNEN M, RAS R H, et al. Hydrophobicnanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absor-bents[J]. Acs Applied Materials & Interfaces, 2011,3(6):1813-1816.
doi: 10.1021/am200475b pmid: 21627309 |
[5] |
ZHAO J Q, LU C H, HE X, et al. Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery[J]. Acs Appl Mater Interfaces, 2015,7(4):2607-2615.
doi: 10.1021/am507601m pmid: 25562313 |
[6] |
XIONG R, LU C H, WANG Y R, et al. Nanofibrillated cellulose as the support and reductant for the facile synjournal of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity[J]. Journal of Materials Chemistry A, 2013(47):14910-14918.
doi: 10.1039/c3ta13314a |
[7] |
WU Q, ANDERSSON R, HOLGATE T, et al. Highly porous flame-retardant and sustainable biofoams based on wheat gluten and in situ polymerized silica[J]. Journal of Materials Chemistry A, 2014(48):20996-21009.
doi: 10.1039/c4ta04787g |
[8] | HAN Y Y, ZHANG X X, WU X D, et al. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostruc-tures[J]. Acs Sustainable Chemistry & Engineering, 2015,3(8):1853-1859. |
[9] |
WANG Y, GAWRYLA M D, SCHIRALDI D A. Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels[J]. Journal of Applied Polymer Science, 2013,129:1637-1641.
doi: 10.1002/app.39143 |
[10] | 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019,40(10):20-25. |
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019,40(10):20-25. | |
[11] | 朱晓琪. PBAT/有机蒙脱土纳米复合材料的制备及性能研究[D]. 株洲: 湖南工业大学, 2015: 47-57. |
ZHU Xiaoqi. Preparation and properties of PBAT/organic montmorillonite nanocomposites[D]. Zhuzhou: Hunan University of Technology, 2015: 47-57. | |
[12] | WANG L, SANCHEZ-SOTO M, ABT T. Properties of bio-based gum Arabic/clay aerogels[J]. Industrial Crops & Products, 2016,91:15-21. |
[13] | NGUYEN S T, FENG J, SHAO K N, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014,445:128-134. |
[14] | SHI J J, LU L B, GUO W T, et al. An environment-friendly thermal insulation material from cellulose and plasma modification[J]. Journal of Applied Polymer Science, 2014,130:3652-3658. |
[15] | 白小元, 车德勇, 蒋文强, 等. 纤维素热解的TG-FTIR分析[J]. 可再生能源, 2015(33):1582-1588. |
BAI Xiaoyuan, CHE Deyong, JIANG Wenqiang, et al. TG-FTIR analysis of cellulose pyrolysis[J]. Renewable Energy, 2015 (33):1582-1588. | |
[16] | 徐卫兵, 戈明亮, 何平笙. 聚丙烯/蒙脱土纳米复合材料的制备与性能[J]. 中国塑料, 2000(11):27-31. |
XU Weibing, GE Mingliang, HE Pingsheng. Preparation and properties of polypropylene/montmorillonite nanocomposites[J]. China Plastics, 2000 ( 11):27-31. | |
[17] |
SONG Z Y, HONG X X, ZHANG L Q, et al. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile(PAN) nanocom-posites[J]. Materials, 2011,4:621-632.
doi: 10.3390/ma4040621 pmid: 28879944 |
[18] | 李博, 刘岚, 罗鸿鑫, 等. 有机蒙脱土/天然橡胶纳米复合材料的阻燃性能研究[J]. 高分子学报, 2007(1):456-461. |
LI Bo, LIU Lan, LUO Hongxin, et al. Flame retardant properties of organic montmorillonite/natural rubber nanocomposites[J]. Journal of Polymer, 2007 ( 1):456-461. |
[1] | 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155. |
[2] | 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111. |
[3] | 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15. |
[4] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[5] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[6] | 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37. |
[7] | 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122. |
[8] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[9] | 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38. |
[10] | 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25. |
[11] | 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
[12] | 盛宇, 徐丽慧, 孟云, 沈勇, 王黎明, 潘虹. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(07): 90-96. |
[13] | 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17. |
[14] | 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14. |
[15] | 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107. |
|