纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 158-164.doi: 10.13475/j.fzxb.20190204507

• 纺织科技新见解学术沙龙专栏:安全与防护用纺织品及其防护技术 • 上一篇    下一篇

纺织基防弹防穿刺材料的研究回顾

陈晓钢()   

  1. 曼彻斯特大学 材料学院, 英国 曼彻斯特 M199PL
  • 收稿日期:2019-02-25 修回日期:2019-03-20 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:陈晓钢(1959—),男,副教授,博士。主要研究方向为纺织结构的数学建模及CAD技术,三维纺织复合材料以及高低速冲击防护材料。E-mail: xiaogang.chen@manchester.ac.uk

Trend of research in textile-based protective materials against ballistic and stabbing

CHEN Xiaogang()   

  1. School of Materials, The University of Manchester, Manchester, UK M199PL
  • Received:2019-02-25 Revised:2019-03-20 Online:2019-06-15 Published:2019-06-25

摘要:

以纺织纤维和纺织结构为基础的柔性防弹防穿刺材料由于其轻质高强和可服用性而备受重视,为此,从纱线间的摩擦性能、防护组合体的准各向同性设计、杂化设计、三维纺织结构以及剪切增稠流体的使用等角度探讨了防弹材料的防弹效果。认为芳纶纤维和超高分子量聚乙烯纤维的高强度、高模量以及由此产生的高能量吸收使得他们成为防护器材的主要原料。以经纬交织为特色的机织结构仍然是防护材料的基本结构单元,但研究内容已转向纤维强度的利用效率和经纬纱线之间的应力传播效能对防护性能的影响。准各向同性和杂交化的防护片设计被证明是提高防护性能行之有效的方法。不同类别的三维纺织结构及其复合材料的抗冲击、抗穿刺性能由于其结构一体性受到了研究者们的关注。非牛顿流体的使用有助于防穿刺性能的提高。

关键词: 纺织基防弹材料, 纱线间摩擦, 准各向同性和杂交化设计, 三维纺织结构, 非牛顿流体

Abstract:

Textile-based protective materials against ballistic and stabbing impact have drawn tremendous attention due to their high performance, lightweight and wearability. This paper reviews and discusses the performance of ballistic materials in relation to the inter-yarn friction within a constituent ballistic fabric, and quasi-isotropic design and hybrid design of the ballistic panels, the use of 3-D textile structures, and the incorporation of the shear thickening fluid. High strength, high modulus and the derived high impact energy absorption of aramid fibres and ultra high molecular weight polyethylene fibres made them the main types of raw materials for the protective equipment. Woven fabrics, featured by perpendicular interlacement between warp and weft yarns, remain to be main structure used for impact protection, with much attention focusing on efficiency of fibre strength utilization and on the stress propagation between warp and weft yarns. Quasi-isotropic and hybrid designs have been proven to be effective for protection enhancement. Various types of 3-D textiles and their composites are used to improve the protection performance because of the structural integrity. Use of non-Newtonian fluid has shown to lead to improved stabbing properties.

Key words: textile based ballistic materials, inter-yarn friction, quasi-isotropic and hybrid design, 3-D textile structure, non-Newtonian fluid

中图分类号: 

  • TS941

表1

纤维主要力学性能指标"

纤维类别 密度/
(g·cm-3)
强度/
(N·tex-1)
弹性模量/
(N·tex-1)
伸长
率/%
Kevlar?? 29 1.44 2.0 49 3.8
Kevlar?? 49 1.44 2.1 78 2.4
Kevlar?? 149 1.44 1.7 115 1.3
Twaron?? 1.44 1.7 60 3.6
Twaron?? HM 1.44 2.1 75 2.5
Twaron?? HT 1.44 2.4 85 3.3
Dyneema?? SK60 0.97 2.8 91 3.5
Dyneema?? SK65 0.97 3.1 97 3.6
Dyneema?? SK71 0.97 3.5 122 3.7
Dyneema?? SK75 0.97 3.5 110 3.8
Dyneema?? SK76 0.97 3.7 120 3.8
Spectra?? 900 0.97 2.6 75 3.6
Spectra?? 1000 0.97 3.2 110 3.3
Spectra?? 2000 0.97 3.4 120 2.9

图1

化学沉积法处理过的芳纶表面"

图2

纱罗组织插入对纱线抽拔力的影响"

图3

准各向同性和正交同性组合体的吸能比较"

图4

准各向同性与正交同性组合体的优势比较"

图5

防弹组合织物层的吸能效率"

图6

防弹组合体中纤维的失效模式"

图7

防弹组合体厚度方向的应力分布"

图8

STF的剪切增稠效应"

图9

用Air Bagging方法制成的连续增强头盔"

[1] CHEN X, CHAUDHRY I. Ballistic Protection[C]// SCOTT R A. Textiles for Protection. Cambridge: Woodhead Publishing Ltd, 2005: 829-832.
[2] CAROTHERS J P. Body armour: a historical perspective [EB/OL]. USMC CSC 1988. https://www.globalsecurity.org/military/library/report/1988/CJ2.htm.
[3] SCOTT R A. Military Protection[M] // SCOTT R A. Textiles for Protection, Cambridge: Woodhead Publishing Ltd, 2005: 605-606.
[4] NIJ Standard-0101.06, US. Department of Justice, Office of Justice Programs [EB/OL]. (2018-12-06) [2018-12-06]. https://www.ncjrs.gov/pdffiles1/nij/223054.pdf.
[5] Home Office Body Armour Standard 2017(UK CAST publication number: 012/17). Home Office, UK [EB/OL]. [2018-12-22]. http://pod-cast.homeoffice.gov.uk.
[6] CHEN X. Advanced Fibrious Composite Materials for Ballistic Protection[M]. Amsterdam: Elsevier, 2016: 4.
[7] YAZDI M M, SHEIKHZADEH M. Personal cooling garments: a review[J]. The Journal of the Textile Institute, 2014,105:1231-1250.
[8] ROYLANCE D, WANG S. Influence of fibre properties on ballistic penetration of textile panels[J]. Fibre Science and Technology, 1981,14:183-190.
[9] WANG Y, CHEN X, YOUNG R, et al. A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics[J]. Composite Structures, 2016(140):44-52.
[10] BRISCOE B J, MOTAMEDI F. The ballistic impact characteristics of aramid fabrics: the influence of interface friction[J]. Wear, 1992,158:229-247.
[11] SUN D, CHEN X. Plasma modification of Kevlar fabrics for ballistic applications[J]. Textile Research Journal, 2012,82:1928-1934.
[12] WANG Y, CHEN X, YOUNG R, et al. Finite element analysis of effect of inter-yarn friction on ballistic response of woven fabrics[J]. Composite Structures, 2016(130):8-16.
[13] ZENG Z, LIU X, CHEN X, et al. Surface modification of aramid fibres with graphene oxide for interface improvement in composites[J]. Applied Composite Materials, 2018,25:853-852.
[14] CHU Y, CHEN X, WANG Q, et al. An investigation on sol-gel treatment to aramid yarn to increase inter-yarn friction[J]. Applied Surface Science, 2014(320):710-717.
[15] ZHOU Y, CHEN X, WELLS G. Influence of yarn gripping on the ballistic performance of woven fabrics from ultra-high molecular weight polyethylene fibre[J]. Composites: part B, 2014,62:198-204.
[16] WANG N. The effect of yarn gripping on fabric ballistic performance[D]. Manchester: University of Manchester, 2017: 3-21.
[17] GOWER H L, CRONIN D S, PLUMTREE A. Ballistic impact of laminated composite panels[J]. International Journal of Impact Engineering, 2008,35:1000-1008.
[18] WANG Y, CHEN X, YOUNG R, et al. An experimental study of the effect of ply orientation on ballistic impact performance of multi-ply fabric panels[J]. Textile Research Journal, 2014,86:34-43.
[19] MIN S, CHU Y, CHEN X. Numerical study on mechanisms of angle-plied panels for ballistic protec-tion[J]. Materials and Design, 2016,90:896-905.
[20] YANG Y, CHEN X. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design[J]. Composite Structures, 2017 (164):1-9.
[21] CHEN X, ZHU F, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B, 2013(45):1508-1514.
[22] ZHOU Y, CHEN X, WELLS G. Numerical and experimental investigations into ballistic performance of hybrid fabric panels[J]. Composites Part B, 2014(58):35-42.
[23] YANG Y, CHEN X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures, 2017(174):233-243.
[24] GU B. Modelling of 3D woven fabrics for ballistic protection[C]// CHEN X. Advanced Fibrous Composite Materials for Ballistic Protection. Amsterdam: Elsevier, 2016: 145-197.
[25] ZENG H, YUAN Z, QIU J, et al. Finite element study on the influence of structural parameters on the ballistic performance of 3D networked fabrics[J]. Applied Composite Materials, 2018,25:891-903.
[26] ARORA S, MAJUMDAR A, BUTOLA B S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics[J]. Composite Structures, 2019(210):41-48.
[27] XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017(163):465-473.
[28] BUESGEN A. Shell three-dimensional woven textiles[C]// CHEN X. Advances in 3D Textiles. Amsterdam: Elsevier, 2016: 79-98.
[29] ROEDEL C, CHEN X. Innovation and analysis of police riot helmets with continuous textile reinforcement for improved protection[J]. Journal of Information and Computing Science, 2007(2):127-136.
[30] MIN S, CHEN X, CHAI Y, et al. Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabrics[J]. Composites Part B, 2016(90):30-36.
[31] YANG D, CHEN X. Multi-layer pattern creation for seamless front body armour panel using angle-interlock woven fabrics[J]. Journal of Industrial Textiles, 2017(87):381-386.
[32] ZAHID B, CHEN X. Impact performance of single piece continuously textile-reinforced helmet shells[J]. Journal of Composite Materials, 2014,48:761-766.
[1] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20-25.
[2] 周熠 张尚勇 龚小舟 徐安长. 摩擦对平纹织物防弹性能影响的研究进展[J]. 纺织学报, 2016, 37(08): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!