纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 26-32.doi: 10.13475/j.fzxb.20190301507

• 纤维材料 • 上一篇    下一篇

聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能

甄琪1, 张恒2(), 朱斐超3, 史建宏4, 刘雍5, 张一风1   

  1. 1.中原工学院 服装学院, 河南 郑州 451191
    2.中原工学院 纺织学院, 河南 郑州 451191
    3.浙江理工大学纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    4.苏州多瑈新材料科技有限公司,江苏 苏州 215600
    5.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2019-03-04 修回日期:2019-11-24 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 张恒
  • 作者简介:甄琪(1989—),女,硕士生。主要研究方向为纤维材料的功能性结构设计及应用。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309100);中国国家留学基金项目(201808410565);河南省高等学校重点科研项目(20A540001);纺织服装产业河南省协同创新中心资助项目(2020-CYY-003);中原工学院资助项目(K2018QN011);中原工学院资助项目(2018XQG04)

Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process

ZHEN Qi1, ZHANG Heng2(), ZHU Feichao3, SHI Jianhong4, LIU Yong5, ZHANG Yifeng1   

  1. 1. School of Clothing, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. School of Textile, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    3. College of Textile Science and Engineering & International Institute of Silk, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    4. Suzhou Doro New Material Technology Co., Ltd., Suzhou, Jiangsu 215600, China
    5. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-03-04 Revised:2019-11-24 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Heng

摘要:

针对聚丙烯(PP)超细纤维材料韧性不足的问题,以聚酯(PET)和PP为原料,采用共混熔喷法制备了PP/PET双组分微纳米纤维熔喷非织造材料,研究了PP/PET双组分聚合物熔体的流动指数和热性能,并对制备样品的形貌特征和柔韧性进行分析。结果表明:样品形貌为典型的熔喷非织造材料结构特征,细纤维与粗纤维在水平方向上交错排列形成叠合形态;且随PET质量分数从8% 增大到15%,纤维的平均直径从5.52 μm逐渐降低到3.61 μm;在双组分纤维内,PET与PP之间有清晰相界面,且PET以直径为10~100 nm的微纤形式存在;样品的韧性得分随着PET质量分数的提高从29.91增到35.20。

关键词: 熔喷非织造材料, 微纳米纤维, 柔韧性, 聚丙烯, 聚酯

Abstract:

In order to improve the flexibility of pure polypropylene (PP) microfiber materials, polypropylene/polyester (PP/PET) bi-component micro-nanofibers were prepared by melt-blown blending processing using PET and PP chips. The melt flowing index and thermal properties of the materials were studied, and the morphological characteristics and flexibility of the samples were analyzed experimentally. The sample morphology shows a typical melt-blown fiber webs structure, and the fine and coarse fibers overlap in the horizontal direction forming a layer-by-layer morphology. Besides, the average fiber diameter decreases from 5.52 μm to 3.61 μm when the PET mass ratio increases from 8% to 15%. A clear phase interface is observed between PET and PP components in the bi-component fiber and PET exists in the form of fibers with diameters ranging from 10-100 nm. Furthermore, the flexibility score of the samples increases from 29.91 to 35.20 as PET content increases.

Key words: melt blowing nonwoven, micro-nano fiber, flexibility, polypropylene, polyester

中图分类号: 

  • TS176

表1

样品制备方案"

实验
编号
PET质量
分数/%
PP质
量分数/%
实验
编号
PET质量
分数/%
PP质量
分数/%
1# 0 100 6# 10 90
2# 5 95 7# 10 90
3# 8 92 8# 12 88
4# 10 90 9# 15 85
5# 10 90

图1

熔喷样品制备工艺流程"

图2

聚合物熔体流动指数随温度的变化曲线"

图3

PP/PET共混物的DSC曲线"

表2

样品特征参数测试结果"

样品
编号
平均厚度/
mm
面密度/
(g·m-2)
孔隙率/
%
1# 0.554 63.49 87.41
2# 0.556 64.09 87.65
3# 0.559 64.73 87.78
4# 0.611 67.05 88.53
5# 0.327 33.52 89.29
6# 0.283 23.14 91.46
7# 0.261 16.42 93.43
8# 0.560 65.01 87.99
9# 0.562 65.45 88.12

图4

PP/PET双组分微纳米纤维的横截面形貌电镜照片"

图5

PP/PET双组分微纳米纤维网的表面形貌电镜照片"

图6

PP/PET双组分微纳米纤维的平均纤维直径与PET质量分数的关系曲线"

图7

韧性得分和柔性得分与PET质量分数的关系"

图8

韧性得分和柔性得分与面密度的关系曲线"

[1] 张恒, 甄琪, 刘雍, 等. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018,39(12):18-23.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Preparation and liquid horizontal diffusion properties of polyethylene glycol/polypropylene microfibers with bionic horizontal branched structure[J]. Journal of Textile Research, 2018,39(12):18-23.
[2] 彭孟娜, 贾慧莹, 周彦粉, 等. 热风温度对PP/TPU熔喷非织造布结构与性能的影响[J]. 丝绸, 2018,55(8):35-40.
PENG Mengna, JIA Huiying, ZHOU Yanfen, et al. Study on effect of hot air temperature on structure and property of PP/TPU melt-blown nonwovens[J]. Journal of Silk, 2018,55(8):35-40.
[3] 金关秀, 张毅, 楼永平, 等. 应用粗糙集和支持向量机的熔喷非织造布过滤性能预测[J]. 纺织学报, 2018,39(6):142-148.
JIN Guanxiu, ZHANG Yi, LOU Yongping, et al. Prediction on filtration performance of melt blown nonwoven fabric based on rough set theory and support vector machine[J]. Journal of Textile Research, 2018,39(6):142-148.
[4] 金晓. PP/PE双组分共混熔喷非织造工艺及纤网性能的研究[D]. 上海: 东华大学, 2007: 7-10.
JIN Xiao. Study on process parameters and web properties of PP/PE blends melt-blown nonwovens[D]. Shanghai: Donghua University, 2007: 7-10.
[5] 郦华兴. GF/PP/HDPE复合物的性能研究[J]. 复合材料学报, 1991,8(4):45-50.
LI Huaxing. A study of the properties of gf/pp/hdpe composite[J]. Acta Materiae Compositae Sinica, 1991,8(4):45-50.
[6] MA Yulong, WANG Xiaomeng, LIU Wei, et al. Effects of annealing process on crystallization and low temperature resistance properties of pp-r compo-sites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2018,33(4):855-862.
doi: 10.1007/s11595-018-1904-y
[7] 孟晓华. 熔喷螺旋结构微纳米纤维的制备及其性能研究[D]. 上海: 东华大学, 2015: 23-28.
MENG Xiaohua. Study on the fabrication and property of microscale helical fibers via melt blowing[D]. Shanghai: Donghua University, 2015: 23-28.
[8] LI Hui, HUANG Hui, MENG Xiaohua, et al. Fabrication of helical microfibers from melt blown polymer blends[J]. Journal of Polymer Science: Part B: Polymer Physics, 2018,56(13):970-977.
doi: 10.1002/polb.v56.13
[9] SELEVEN Rungiah, RENUKARN Ruamsuk, PHILIPPE Vroman, et al. Structural characterization of polypropylene/poly(lactic acid) bicomponent melt-blown[J]. Journal of Applied Polymer Science, 2017,134:1-9.
[10] ZHAO R G, WADSWORTH L C. Attenuating PP/PET bicomponent melt blown microfibers[J]. Polymer Engineering & Science, 2010,43(2):463-469.
[11] 刘琼珍, 周舟, 李沐芳, 等. 热塑性纳米纤维的制备及功能化[J]. 中国材料进展, 2014(8):468-474.
LIU Qiongzhen, ZHOU Zhou, LI Mufang, et al. Fabrication and functionalization of thermoplastic nanofibers[J]. Materials China, 2014(8):468-474.
[12] WANG D, SUN G. Novel polymer blends from polyester and bio-based cellulose ester[J]. Journal of Applied Polymer Science, 2011,119(4):2302-2309.
[13] 朱雅红, 马晓燕, 黄韵, 等. 弹性体增韧氰酸酯树脂的研究[J]. 工程塑料应用, 2005,33(1):19-22.
ZHU Yahong, MA Xiaoyan, HUANG Yun, et al. Study on toughening modification of cyanate esters by elastomers[J]. Engineering Plastics Application, 2005,33(1):19-22.
[14] EVERAERT V, AERTS L, GROENINCKX G. Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition[J]. Polymer, 1999,40(24):6627-6644.
[15] ZHANG Heng, QIAN Xiaoming, ZHEN Qi, et al. Research on structure characteristics and filtration performances of PET-PA6 hollow segmented-pie bicomponent spunbond nonwovens fibrillated by hydro entangle method[J]. Journal of Industrial Textiles, 2015,45(1):48-65.
doi: 10.1177/1528083714521073
[16] 韦良强, 黄安荣, 孙静, 等. iPP/PET原位微纤复合材料的超临界二氧化碳发泡行为[J]. 高分子材料科学与工程, 2018,34(7):66-71.
WEI Liangqiang, HUANG Anrong, SUN Jing, et al. Isotactic polypropylene/polyethylene terephthalate in situ microfibrillar composites foams using supercritical CO2[J]. Polymer Materials Science and Engineering, 2018,34(7):66-71.
[17] 张义盛, 吴德峰, 曹健, 等. PET/PP共混体系的熔融及非等温结晶行为[J]. 塑料科技, 2007(1):28-31.
ZHANG Yisheng, WU Defeng, CAO Jian, et al. Melting and non-isothermal crystallization behavior of PET/PP blend[J]. Plastics Science and Technology, 2017(1):28-31.
[18] 陶友季, 麦堪成. 增容PP/回收PET共混物的非等温结晶和熔融行为研究[J]. 中山大学学报(自然科学版), 2007(4):45-49.
TAO Youji, MAI Kancheng. Study on the non-iso thermal and melting behaviors of compatibilized PP/recycled PET blends[J]. ACTA Scientiarum Naturalium Universitatis Sunyatseni, 2007(4):45-49.
[19] 张红霞, 陈雪善, 刘芙蓉, 等. 蜂窝状微孔结构纤维表面形态观察及其统计分析[J]. 纺织学报, 2009,30(2):13-17.
ZHANG Hongxia, CHEN Xueshan, LIU Furong, et al. observation and statistic analysis of surface structure of honeycomb micropore fiber[J]. Journal of Textile Research, 2009,30(2):13-17.
[20] YU Bin, WANG Mingjun, SUN Hui, et al. Preparation and properties of poly (lactic acid)/magnetic Fe3O4 composites and nonwovens[J]. RSC Advances, 2017,7(66):41929-41935.
doi: 10.1039/C7RA06427F
[1] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[2] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[3] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/ 羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[4] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[5] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[6] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[7] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[8] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[9] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[10] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[11] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[12] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[13] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[14] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[15] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!