纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 8-14.doi: 10.13475/j.fzxb.20190302507

• 纤维材料 • 上一篇    下一篇

超临界CO2处理温度对二醋酸纤维结构与性能的影响

朱维维1, 蔡冲2,3, 张聪2,3, 龙家杰2,3, 施楣梧1,3,4()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.苏州大学 纺织与服装工程学院, 江苏 苏州 215000
    3.苏州大学 超临界流体无水绳状匹染技术科研基地, 江苏 苏州 215123
    4.军事科学院系统工程研究院 军需工程技术研究所, 北京 100010
  • 收稿日期:2019-03-12 修回日期:2019-12-17 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 施楣梧
  • 作者简介:朱维维(1989—),女,博士生。主要研究方向为基于超临界CO2技术的亲肤性纤维的开发。

Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber

ZHU Weiwei1, CAI Chong2,3, ZHANG Cong2,3, LONG Jiajie2,3, SHI Meiwu1,3,4()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
    3. National Scientific Research Base for Waterless Coloration with Supercritical Fluid, Soochow University, Suzhou, Jiangsu 215123, China
    4. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Science, Beijing 100010, China
  • Received:2019-03-12 Revised:2019-12-17 Online:2020-03-15 Published:2020-03-27
  • Contact: SHI Meiwu

摘要:

为拓展超临界CO2技术在二醋酸纤维加工中的应用,采用不同超临界CO2处理温度对二醋酸纤维进行处理,借助扫描电子显微镜、傅里叶变换红外光谱仪、X射线多晶衍射仪、热重分析仪、差示扫描量热仪和万能强力仪探讨了处理前后纤维表面形态、化学结构、聚集态结构、热降解性能、热稳定性和断裂强力的变化。结果表明:不同温度(80、100、120 ℃)条件下,纤维结晶度均有所下降,由处理前的39.41%分别降低至32.43%、31.57%、32.16%;当温度达120 ℃时,二醋酸纤维中部分氢键被破坏,纤维耐热性能、热稳定性有一定下降,但并不显著,纤维的表面形态、化学结构并未发生明显改变,拉伸断裂强力仍保持在3.20 cN左右。

关键词: 超临界CO2, 二醋酸纤维, 表面形态, 聚集态结构, 热降解性能, 热稳定性, 拉伸断裂强力

Abstract:

In order to develop applications of supercritical CO2 technology in processing diacetate fibers, supercritical CO2 treatment to diacetate fibers at different temperatures was carried out. The fiber surface morphology,chemical structure, aggregation structure, thermal degradation property, thermal stability and tensile strength were investigated respectively by scanning electron microscope technology, infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and universal strength tester. The results indicate that the crystallinity of diacetate fibers decrease from 39.41% to 32.43%, 31.57% and 32.16% respectively under different treatment temperatures(80, 100, 120 ℃). When the temperature is 120 ℃ some hydrogen bonds in diacetate fibers are destroyed, and the thermal resistance and thermal stability of diacetate fibers decrease slightly, but the surface morphology and chemical structure of diacetate fibers are virtually unchanged, and tensile strength remains to be about 3.20 cN.

Key words: supercritical CO2, diacetate fiber, surface morphology, aggregation structure, thermal degradation property, thermal stability, tensile strength

中图分类号: 

  • TS195.6

图1

不同处理温度下二醋酸纤维的扫描电镜照片(×1 000)"

图2

不同处理温度下二醋酸纤维的红外光谱图"

图3

不同处理温度下二醋酸纤维的XRD谱图"

图4

二醋酸纤维的TG和DTG曲线"

图5

二醋酸纤维的DSC分析曲线"

表1

不同处理温度下二醋酸纤维的DSC测试数据"

处理温度/℃ 第1个峰 第2个峰 第3个峰 玻璃化转变温度/℃
温度/℃ 热焓/(J·g-1) 温度/℃ 热焓/(J·g-1) 温度/℃ 热焓/(J·g-1)
未处理样 91.46 62.724 2 204.27 2.717 9 233.35 6.807 6 194.62
80 89.02 18.266 6 201.64 2.736 2 233.22 5.275 2 195.60
100 73.61 19.074 3 202.92 2.702 3 233.17 6.249 1 196.59
120 95.91 74.741 0 201.57 2.945 5 233.32 6.077 4 194.29

表2

超临界CO2处理温度对二醋酸纤维拉伸断裂强力的影响"

处理温度/℃ 断裂强力/cN 强力变化率/%
未处理样 3.20
80 2.85 -10.94
100 3.48 8.75
120 2.90 -9.38
[1] 何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与性能[J]. 纺织学报, 2008,29(10):12-16.
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile Research, 2008,29(10):12-16.
[2] SAYYED A J, DESHMUKH N A, PINJARI D V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell[J]. Cellulose, 2019,26(5):2913-2940.
[3] 牛建设, 蔡玉兰. 二醋酸纤维的动态力学性能[J]. 纺织学报, 2008,29(9):20-22.
NIU Jianshe, CAI Yulan. Dynamic mechanical properties of diacetate fiber[J]. Journal of Textile Research, 2008,29(9):20-22.
[4] WORKT R W. The effect of variations in degree of structural order on some physical properties of cellulose and cellulose acetate yarns[J]. Textile Research Journal, 1949,19(7):381-393.
[5] NIKITIN L N, GALLYAMOV M O, VINOKUR R A, et al. Swelling and impregnation of polystyrene using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2003,26(3):263-273.
[6] CHAMPEAU M, THOMASSIN J M, TASSAING T, et al. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review[J]. Journal of Controlled Release, 2015,209:248-259.
doi: 10.1016/j.jconrel.2015.05.002 pmid: 25953410
[7] 崔创龙. 超临界 CO2 流体中分散活性染料的上染及催化固色研究[D]. 苏州:苏州大学, 2014: 73-93.
CUI Chuanglong. Uptake and phase transfer catalytic fixation of disperse reactive dye in supercritical carbon dioxide[D]. Suzhou:Soochow University, 2014: 73-93.
[8] 钱静, 龙家杰, 蒋耀兴, 等. 超临界CO2流体处理对大豆纤维性能的影响[J]. 印染, 2011,37(11):5-8.
QIAN Jing, LONG Jiajie, JIANG Yaoxing, et al. Effects of supercritical CO2 fluid treatment on properties of soybean fiber[J]. China Dyeing & Finishing, 2011,37(11):5-8.
[9] 龙家杰, 陆同庆, 张培群, 等 .超临界 CO2 流体对涤纶纤维聚集态结构的修饰[J]. 丝绸, 2005(5):17-20.
LONG Jiajie, LU Tongqing, ZHANG Peiqun, et al. The structure modify of pet aggregation by supercritical CO2[J]. Journal of Silk, 2005 (5):17-20.
[10] LONG J J, CUI C L, WANG L, et al. Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid[J]. Journal of Cleaner Production, 2013,43:52-58.
[11] ZHENG H, ZHANG J, DU B, et al. An investigation for the performance of meta-aramid fiber blends treated in supercritical carbon dioxide fluid[J]. Fibers and Polymers, 2015,16(5):1134-1141.
[12] 冉瑞龙, 龙家杰, 徐水, 等 .超临界 CO2 流体处理对蚕丝纤维结构的影响[J]. 丝绸, 2006(5):22-25.
RAN Ruilong, LONG Jiajie, XU Shui, et al. Effect of supercritical CO2 treatment on the structure of silk[J]. Journal of Silk, 2006(5):22-25.
[13] GAAN S, MAUCLAIRE L, RUPPER P, et al. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates[J]. Journal of Analytical and Applied Pyrolysis, 2011,90(1):33-41.
[14] RAMESH S, SHANTI R, MORRIS E. Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polymer electrolytes[J]. Carbohydrate polymers, 2012,87(4):2624-2629.
[15] CAO Y, WU J, MENG T, et al. Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl)[J]. Carbohydrate Polymers, 2007,69(4):665-672.
[16] GUO Y, WU P. Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy[J]. Carbohydrate Polymers, 2008,74(3):509-513.
[17] 侯兵兵. 基于服用的醋酸纤维丝束理化性能及染色研究[ D]. 上海:东华大学, 2017: 14.
HOU Bingbing. Study on physic-chemical properties and dyeing of cellulose acetate tow based on weara-bility[D]. Shanghai:Donghua University, 2017: 14.
[18] TANG M M, BACON R. Carbonization of cellulose fibers:I:low temperature pyrolysis[J]. Carbon, 1964,2(3):211-220.
[19] 梅洁, 欧义芳, 陈家楠. 醋酸纤维素取代基分布与性质的关系[J]. 纤维素科学与技术, 2002(1):12-19.
MEI Jie, OU Yifang, CHEN Jia'nan.Relationship between substituent distribution and property for cellulose acetate[J]. Journal of Cellulose Science and Technology, 2002(1):12-19.
[20] SHI Y, YANG B, MIAO J B, et al. Filler network structure and crystallization behavior of polyvinylidene fluoride/graphene nanoplatelet composites using SEM, DSC, rheological, and in situ measurement approach[J]. Polymer Crystallization, 2019,2(1):e10041. DOI: 10.1002/pcr2.10041.
[1] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[2] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[3] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[4] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101.
[5] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[6] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[7] 郭新月, 杨占平, 宋晓梅, 徐阳. 正二十烷/醋酸纤维素相变过滤材料的制备及其性能[J]. 纺织学报, 2019, 40(09): 15-21.
[8] 向国栋, 高庆文, 邓倩倩, 张须臻, 王秀华. 阳离子染料易染改性聚酯的固相缩聚工艺与性能[J]. 纺织学报, 2019, 40(04): 21-25.
[9] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[10] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[11] 贾丽霞 金崇业 刘瑞 单国华. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017, 38(12): 101-105.
[12] 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184.
[13] 刘鹏雷 姜鹏飞 刘燕军 郑帼. 纺丝油剂中脂肪酸酯类平滑剂的抗氧化及热稳定性[J]. 纺织学报, 2017, 38(04): 68-72.
[14] 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39.
[15] 毛雪峰 钱杨 蒋佳莉 周邓飞 么丹阳 王秀华. 低熔点聚酰胺的制备与性能[J]. 纺织学报, 2016, 37(3): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!