纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 168-173.doi: 10.13475/j.fzxb.20190304306
LI Liping1, WU Daoyi1, ZHAN Yikai1, HE Min1,2()
摘要:
针对碳纤维表面极性官能团少,化学活性低,与基体间的界面结合强度弱等问题,综述了国内外关于电泳沉积碳纳米管和氧化石墨烯修饰碳纤维提高其复合材料力学性能的最新研究进展。阐述了在不同的电泳沉积工艺下,分别在碳纤维表面引入碳纳米管和氧化石墨烯,对修饰碳纤维表面及其复合材料力学性能的影响。总结了影响电泳沉积修饰碳纤维效果的因素,并提出了相应的建议。展望了电泳沉积修饰碳纤维表面的研究发展方向,指出对碳纤维、碳纳米管和氧化石墨烯进行预处理,添加辅助工艺的电泳沉积设备制造将会成为未来的重要研究方向。
中图分类号:
[1] | ZHAO Zhongbo, TENG Kunyue, LI Nan, et al. Mechanical thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface[J]. Composite Structures, 2017,159:761-772. |
[2] | 韩潇, 肇研, 孙健明, 等. 氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能[J]. 新型炭材料, 2017,32(1):48-55. |
HAN Xiao, ZHAO Yan, SUN Jianming, et al. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites[J]. New Carbon Materials, 2017,32(1):48-55. | |
[3] | CHEN Y K, GREEN M L H, TSANG S C. Synjournal of carbon nanotubes filled with long continuous crystals of molybdenum oxides[J]. Chemical Communications, 1996(21):2489-2490. |
[4] | 刘敏敏, 蔡超, 张志杰. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019,33(1):103-109. |
LIU Minmin, CAI Chao, ZHANG Zhijie. Carbon nanomaterials supported transition metal oxides as supercapacitor electrodes[J]. Materials Reports, 2019,33(1):103-109. | |
[5] | 李君, 矫维成, 闫美玲, 等. 碳纳米材料接枝碳纤维的复合材料界面增效研究进展[J]. 玻璃钢/复合材料, 2018(1):108-113. |
LI Jun, JIAO Weicheng, YAN Meiling, et al. Research progress on composite interface design of grafting carbon nanomaterials onto carbon fibers[J]. Fiber Reinforced Plastics/Composites, 2018(1):108-113. | |
[6] |
NGUYEN-TRAN H D, HOANG V T, DO V T, et al. Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/ polypropylene composites for lightweight automotive parts[J]. Materials, 2018,11(3). DOI: 10.3390/ ma11030429.
doi: 10.3390/ma11030452 pmid: 29558402 |
[7] | LV Peng, FENG Yiyu, ZHANG Peng, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers[J]. Carbon, 2011,49(14):4665-4673. |
[8] | LI Fei, QU Chengbing, HUA Yang, et al. Largely improved dimensional stability of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating at a low content[J]. Carbon, 2017,119:339-349. |
[9] | LU Haibao, YAO Yongtao, HUANG Weimin, et al. Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites[J]. Composites Part B: Engineering, 2014(67):290-295. |
[10] |
PARK S J, JANG Y S, RHEE K Y. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces[J]. Journal of Colloid and Interface Science, 2002,245(2):383-390.
pmid: 16290372 |
[11] | HE Shuqing, ZHANG Shouchun, LU Chunxiang. Coating carbon fiber using polyimide:silica nanocomposite by electrophoretic deposition[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2011,387(1):86-91. |
[12] | 眭凯强, 张庆波, 刘丽. 碳纤维电泳沉积碳纳米管对界面性能的影响[J]. 材料科学与工艺, 2015,23(1):45-50. |
SUI Kaiqiang, ZHANG Qingbo, LIU Li. The influence of carbon fiber reinforcement composite by electrophoretic deposition carbon nanotubes on interfacial property of carbon fiber surface[J]. Materials Science & Technology, 2015,23(1):45-50. | |
[13] |
LIU J, RINZLER A G, DAI H J, et al. Fullerene pipes[J]. Science, 1998,280(5367):1253-1256.
doi: 10.1126/science.280.5367.1253 pmid: 9596576 |
[14] | HAMON M A, CHEN J, HU H, et al. Dissolution of single-walled carbon nanotubes[J]. Advanced Materials, 2010,11(10):834-840. |
[15] |
BEKYAROVA E, THOSTENSON E T, YU A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2007,23(7):3970.
doi: 10.1021/la062743p pmid: 17326671 |
[16] | DENG Chao, JIANG Jianjun, LIU Fa, et al. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite[J]. Applied Surface Science, 2015,357:1274-1280. |
[17] |
LEE W, LEE S B, CHOI O, et al. Formicary-like carbon nanotube/copper hybrid nanostructures for carbon fiber-reinforced composites by electrophoretic deposi-tion[J]. Journal of Materials Science, 2011,46(7):2359-2364.
doi: 10.1007/s10853-010-5082-3 |
[18] |
GUO Jinhai, LU Chunxiang, AN Feng, et al. Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition[J]. Materials Letters, 2012,66(1):382-384.
doi: 10.1016/j.matlet.2011.09.022 |
[19] | YEO S H, CHOO J H, SIM K H A. On the effects of ultrasonic vibrations on localized electrochemical deposition[J]. Journal of Micromechanics & Microengineering, 2002,12(3):271. |
[20] |
JIANG J J, LIU F, DENG C, et al. Influence of deposited CNTs on the surface of carbon fiber by ultrasonically assisted electrophoretic deposition[J]. IOP Conference Series: Materials Science and Engineering, 2015,87:012103.
doi: 10.1088/1757-899X/87/1/012103 |
[21] |
RUMMELI M H, ROCHA C G, ORTMANN F, et al. Graphene: piecing it together[J]. Advanced Materials, 2011,23(39):4471-4490.
doi: 10.1002/adma.201101855 |
[22] | EDA Goki, NATHAN Arokia, WOBKENBERG Paul, et al. Graphene oxide gate dielectric for graphene-based monolithic field effect transistors[J]. Applied Physics Letters, 2013,102(13):3322-3324. |
[23] |
SHAO Jiaojing, LV Wei, YANG Quanhong. Self-assembly of graphene oxide at interfaces[J]. Advanced Materials, 2015,26(32):5586-5612.
doi: 10.1002/adma.201400267 pmid: 24852899 |
[24] |
CHEN Liuyun, TANG Yanhong, WANG Ke, et al. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application[J]. Electrochemistry Communications, 2011,13(2):133-137.
doi: 10.1016/j.elecom.2010.11.033 |
[25] |
DREYER D R, PARK S J, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010,39(1):228-240.
doi: 10.1039/b917103g pmid: 20023850 |
[26] |
HUANG Shengyun, WU Gangping, CHEN Chengmeng, et al. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces[J]. Carbon, 2013,52:613-616.
doi: 10.1016/j.carbon.2012.09.062 |
[27] | JIANG Jianjun, YAO Xuming, XU Chumeng, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A: Applied Science & Manufacturing, 2017,95:248-256. |
[28] | DENG Chao, JIANG Jianjun, LIU Fa, et al. Influence of graphene oxide coatings on carbon fiber by ultrasonically assisted electrophoretic deposition on its composite interfacial property[J]. Surface & Coatings Technology, 2015,272(8):176-181. |
[29] |
DENG Chao, JIANG Jianjun, LIU Fa, et al. Effects of electrophoretically deposited graphene oxide coatings on interfacial properties of carbon fiber composite[J]. Journal of Materials Science, 2015,50(17):5886-5892.
doi: 10.1007/s10853-015-9138-2 |
[30] |
MOON I K, LEE J, LEE H. Highly qualified reduced graphene oxides: the best chemical reduction[J]. Chemical Communications, 2011,47(34):9681-9683.
doi: 10.1039/c1cc13312h |
[31] |
LEE W, LEE J, BYUN J H, et al. Partially reduced graphene oxide as a multi-functional sizing agent for carbon fiber composites by electrophoretic deposi-tion[J]. Rsc Advances, 2013,3(48):25609-25613.
doi: 10.1039/c3ra44155e |
[32] | WANG Caifeng, LI Jun, SUN Shaofan, et al. Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength[J]. Composites Science & Technology, 2016,135:46-53. |
[33] |
KWON Y J, KIM Y, JEON H, et al. Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites[J]. Composites Part B: Engineering, 2017,122:23-30.
doi: 10.1016/j.compositesb.2017.04.005 |
[34] | LU Zeyu, AHANIF Asad, SUN Guoxing, et al. Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties[J]. Cement & Concrete Composites, 2018,87:220-228. |
[35] |
PÉREZ-MARTÍNEZ P, GALVAN-MIYOSHI J M, ORTIZ-LÓPEZ J. Ultrasonic cavitation effects on the structure of graphene oxide in aqueous suspension[J]. Journal of Materials Science, 2016,51(24):10782-10792.
doi: 10.1007/s10853-016-0290-0 |
[1] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[2] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[3] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[4] | 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189. |
[5] | 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/ 多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101. |
[6] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[7] | 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80. |
[8] | 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173. |
[9] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[10] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[11] | 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161. |
[12] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[13] | 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33. |
[14] | 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73. |
[15] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
|