纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 167-173.doi: 10.13475/j.fzxb.20190304907

• 综合述评 • 上一篇    下一篇

功能化氧化石墨烯吸附材料的研究进展

王建坤(), 蒋晓东, 郭晶, 杨连贺   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2019-03-18 修回日期:2020-01-03 出版日期:2020-04-15 发布日期:2020-04-27
  • 作者简介:王建坤(1961—),女,教授,博士。主要研究方向为纺纱新工艺新技术。E-mail: jiankunwang@tjpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(5150030497)

Research progress of functionalized graphene oxide adsorption materials

WANG Jiankun(), JIANG Xiaodong, GUO Jing, YANG Lianhe   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387
  • Received:2019-03-18 Revised:2020-01-03 Online:2020-04-15 Published:2020-04-27

摘要:

为推进氧化石墨烯材料在水处理领域的应用,综述了近几年功能化氧化石墨烯吸附材料的研究成果。首先介绍了氧化石墨烯的制备方法与结构特征,然后将功能化氧化石墨烯吸附材料分成共价键改性材料和非共价键复合材料。针对氧化石墨烯上不同官能团的化学修饰,将共价键改性材料划分成5类:羰基功能化、羧基功能化、羟基功能化、环氧基功能化和碳碳双键功能化。根据复合材料结构形态的不同,将非共价键复合材料划分成3类:氧化石墨烯基凝胶、氧化石墨烯基分离膜、氧化石墨烯基磁性吸附剂。最后讨论了功能化氧化石墨烯吸附材料在水处理中存在的问题,指出共价键和非共价键的联合功能化处理有望成为氧化石墨烯吸附材料的发展方向。

关键词: 氧化石墨烯, 共价键改性材料, 非共价键复合材料, 吸附材料, 废水处理

Abstract:

In order to promote the application of graphene oxide materials in the field of water treatment, research results in functionalized graphene oxide adsorption materials in recent years were reviewed. The paper introduced the preparation methods and structural characteristics of graphene oxide, and the functionalized graphene oxide adsorption material was divided into modified covalent bond materials and non-covalent bond composite materials. According to the chemical modification of different functional groups on graphene oxide, covalent bond modification materials were further divided into five categories: carbonyl functionalization, carboxyl functionalization, hydroxyl functionalization, epoxy functionalization, and carbon-carbon double bond functionalization. Based on the different structural shapes of composite materials, non-covalent bond composite materials were grouped into three categories: graphene oxide-based gels, graphene oxide-based separation membranes and graphene oxide-based magnetic adsorbents. Fundamental problems in functionalized graphene oxide adsorption materials were discussed, and it was pointed out that the combined functional treatment of covalent bonds and non-covalent bonds is expected to become the development direction of graphene oxide adsorption.

Key words: graphene oxide, covalent bond modification material, non-covalent bond composite, adsorption material, waste water treatment

中图分类号: 

  • TQ028.7

表1

4种碳基材料对MB的吸附量"

吸附剂名称 吸附量/(mg·g-1) 参考文献
活性炭 277.90 [24]
碳纳米管 188.68 [25]
石墨烯 153.85 [26]
氧化石墨烯 1 095.70 [27]

图1

GO的羰基功能化改性及吸附吖啶橙示意图"

图2

EDTA-MGO的制备及磁分离过程示意图"

[1] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017,38(8):172-180.
JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textile Research, 2017,38(8):172-180.
[2] LIN S H, JNANG R S, WANG Y H. Adsorption of acid dye from water onto pristine and acid-activated clays in fixed beds[J]. Journal of Hazardous Materials, 2004,113(1-3):195-200.
[3] BHATTACHRYYA A, BANERJEE B, GHORAI S, et al. Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye[J]. International Journal of Biological Macromolecules, 2018,116:1037-1048.
[4] 刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007,18(1):116-119,128.
LIU Meihong. Advances in dyeing and printing wastewater treatment technologies[J]. Journal of Textile Research, 2007,18(1):116-119,128.
[5] GRELUK M, HUBICKII Z. Kinetic, isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins[J]. Chemical Engineering Journal, 2010,162(3):919-926.
[6] JAYANTHI S, ESWAR N K R, SINGH S A, et al. Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications[J]. RSC Advances, 2016,6(2):1231-1242.
[7] DONG H, GAO W, YAN F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Analytical Chemistry, 2010,82(13):5511-5517.
[8] SU C, TANDIANA R, BALAPANURU J, et al. Tandem catalysis of amines using porous graphene oxide[J]. Journal of the American Chemical Society, 2015,137(2):685-690.
[9] ZHAO D, GAO X, WU C, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI)[J]. Applied Surface Science, 2016,384:1-9.
[10] BOTAS C, ÁLVAREZ P, BLANCO P, et al. Graphene materials with different structures prepared from the same graphite by the hummers and brodie methods[J]. Carbon, 2013,65:156-164.
[11] STAUDENMAIER L. Verfahren zur darstellung der graphitsäure[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1898,31(2):1481-1487.
[12] HUMMERS J W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958,80(6):1339-1339.
[13] PENG W, LI H, HU Y, et al. Does silicate mineral impurities in natural graphite affect the characteristics of synthesized graphene?[J]. Materials Research Bulletin, 2016,74:333-339.
[14] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synjournal, properties, and applica-tions[J]. Advanced Materials, 2010,22(35):3906-3924.
doi: 10.1002/adma.201001068 pmid: 20706983
[15] GAO X, JANG J, NAGASE S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2009,114(2):832-842.
[16] PARK S, AN J, PINER R D, et al. Aqueous suspension and characterization of chemically modified graphene sheets[J]. Chemistry of Materials, 2008,20(21):6592-6594.
[17] PEI S, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012,50(9):3210-3228.
[18] TAN P, SUN J, HU Y, et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J]. Journal of Hazardous Materials, 2015,297:251-260.
[19] MARTÍN-JIMENO F J, SUÁREZ-GARCÍA F, PAREDES J I, et al. Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption[J]. Carbon, 2015,81:137-147.
[20] HUANG N M, LIM H N, CHIA C H, et al. Simple room-temperature preparation of high-yield large-area graphene oxide[J]. International Journal of Nanomedicine, 2011,6:3443-3448.
doi: 10.2147/IJN.S26812 pmid: 22267928
[21] ERICKSON K, EMI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010,22(40):4467-4472.
[22] QI Y, YANG M, XU W, et al. Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions[J]. Journal of Colloid and Interface Science, 2017,486:84-96.
[23] WANG J, CHEN B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials[J]. Chemical Engineering Journal, 2015,281:379-388.
[24] KANNAN N, SUNDARAM M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study[J]. Dyes and Pigments, 2001,51(1):25-40.
[25] LI Y, DU Q, LIU T, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chemical Engineering Research and Design, 2013,91(2):361-368.
[26] LIU T, LI Y, DU Q, et al. Adsorption of methylene blue from aqueous solution by graphene[J]. Colloids and Surfaces B: Biointerfaces, 2012,90:197-203.
[27] 李志礼, 黄文星, 葛圆圆. 氧化石墨烯对水中金霉素和亚甲基蓝的吸附性能[J]. 华南理工大学学报(自然科学版), 2018,46(7):62-69,78.
LI Zhili, HUANG Wenxing, GE Yuanyuan. Adsorption properties of graphene oxide on chlortetracycline and methylene blue in water[J]. Journal of South China University of Technology (Natural Science Edition), 2018,46(7):62-69,78.
[28] SUN L, YU H, FUGETSU B. Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution[J]. Journal of Hazardous Materials, 2012,203:101-110.
pmid: 22206973
[29] ZHANG Z, QIU Y, DAI Y, et al. Synjournal and application of sulfonated graphene oxide for the adsorption of uranium (VI) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016,310(2):547-557.
[30] 黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016,74(10):789-799.
HUANG Guojia, CHEN Zhigang, LI Maodong, et al. Surface functional modification of graphene and graphene oxide[J]. Acta Chimica Sinica, 2016,74(10):789-799.
[31] WU Z, ZHONG H, YUAN X, et al. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater[J]. Water Research, 2014,67:330-344.
[32] YARI M, RAJABI M, MORADI O, et al. Kinetics of the adsorption of Pb (II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide[J]. Journal of Molecular Liquids, 2015,209:50-57.
[33] ZHANG C Z, YUAN Y, LI T. Adsorption and desorption of heavy metals from water using aminoethyl reduced graphene oxide[J]. Environmental Engineering Science, 2018,35(9):978-987.
[34] WHITE R L, WHITE C M, TURGUT H, et al. Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparti-cles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018,85:18-28.
[35] GE H, ZOU W. Preparation and characterization of L-glutamic acid-functionalized graphene oxide for adsorption of Pb (II)[J]. Journal of Dispersion Science and Technology, 2017,38(2):241-247.
[36] SCALESE S, NICOTERA I, D'ANGELO D, et al. Cationic and anionic azo-dye removal from water by sulfonated graphene oxide nanosheets in nafion membranes[J]. New Journal of Chemistry, 2016,40(4):3654-3663.
[37] HOU H, HU X, LIU X, et al. Sulfonated graphene oxide with improved ionic performances[J]. Ionics, 2015,21(7):1919-1923.
[38] LI X, ZHOU H, WU W, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites[J]. Journal of Colloid and Interface Science, 2015,448:389-397.
doi: 10.1016/j.jcis.2015.02.039 pmid: 25746192
[39] FANG F, KONG L, HUANG J, et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. Journal of Hazardous Materials, 2014,270:1-10.
pmid: 24525159
[40] 王遥, 朱青, 胡春艳, 等. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017,38(6):11-16.
WANG Yao, ZHU Qing, HU Chunyan, et al. Adsorbability of modified poly (vinyl alcohol-co-ethylene) nanofiber membrane to heavy metal ions[J]. Journal of Textile Research, 2017,38(6):11-16.
[41] POURJAVADI A, NAZARI M, HOSSEINI S H. Synjournal of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution[J]. RSC Advances, 2015,5(41):32263-32271.
[42] HUANG T, DAI J, YANG J, et al. Polydopamine coated graphene oxide aerogels and their ultrahigh adsorption ability[J]. Diamond and Related Materials, 2018,86:117-127.
[43] CHEN Y, CHEN L, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A, 2013,1(6):1992-2001.
[44] 肖长发, 陈凯凯. 石墨烯系吸附与分离功能材料研究进展[J]. 纺织学报, 2016,37(10):162-169.
XIAO Changfa, CHEN Kaikai. Research progress of graphene-plus adsorption and separation functional materials[J]. Journal of Textile Research, 2016,37(10):162-169.
[45] ZHAO Y, LI C, FAN X, et al. Study on the separation performance of the multi-channel reduced graphene oxide membranes[J]. Applied Surface Science, 2016,384:279-286.
[46] LIU X, DUAN J, YANG J, et al. Hydrophilicity, morphology and excellent adsorption ability of poly (vinylidene fluoride) membranes induced by graphene oxide and polyvinylpyrrolidone[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015,486:172-184.
[47] MA F, ZHANG D, HUANG T, et al. Ultrasonication-assisted deposition of graphene oxide on electrospun poly (vinylidene fluoride) membrane and the adsorption behavior[J]. Chemical Engineering Journal, 2019,358:1065-1073.
[48] HUANG Q, LI G, CHEN M, et al. Graphene oxide functionalized O-(carboxymethyl)-chitosan membranes: fabrication using dialysis and applications in water purification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,554:27-33.
[49] CUI L, WANG Y, GAO L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property[J]. Chemical Engineering Journal, 2015,281:1-10.
[50] DRASHYA L, HOODA S. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution [C]//American institute of physics conference proceedings. Bikaner: American Institute of Physics, 2018.DOI: 10.1063/1.5032617.
[51] GAO M, WANG Z, YANG C, et al. Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,566:48-57.
[1] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/ 多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[2] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[3] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[4] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[5] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[6] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[7] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[8] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[9] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[10] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[11] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[12] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[13] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[14] 施小平, 李瑶, 潘家豪, 王挺, 吴礼光. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112.
[15] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!