纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 174-180.doi: 10.13475/j.fzxb.20190308007

• 综合述评 • 上一篇    下一篇

自由基引发剂制备高相对分子质量聚丙烯腈研究进展

赵亚奇1(), 郭雯静2, 杜玲枝1, 赵振新1, 赵海鹏1   

  1. 1.河南城建学院 材料与化工学院, 河南 平顶山 467036
    2.郑州大学 化工与能源学院, 河南 郑州 450001
  • 收稿日期:2019-03-28 修回日期:2019-12-17 出版日期:2020-04-15 发布日期:2020-04-27
  • 作者简介:赵亚奇(1985—),男,副教授,博士。主要研究方向为聚丙烯腈的合成与表征。E-mail: zhyq5891@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(51803047);河南省科技厅项目(202102210035);河南省高等学校青年骨干教师培养计划项目(2019GGJS227);河南城建学院校级学术技术带头人项目(YCJXSJSDTR201909)

Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators

ZHAO Yaqi1(), GUO Wenjing2, DU Lingzhi1, ZHAO Zhenxin1, ZHAO Haipeng1   

  1. 1. School of Materials and Chemical Engineering, Henan University of Urban Construction,Pingdingshan, Henan 467036, China
    2. School of of Chemical Engineering and Energy,Zhengzhou University, Zhengzhou, Henan 450001, China
  • Received:2019-03-28 Revised:2019-12-17 Online:2020-04-15 Published:2020-04-27

摘要:

为开发高品质聚丙烯腈(PAN)共聚物用于PAN基碳纤维生产,针对水相悬浮聚合、水相沉淀聚合和混合溶剂沉淀(悬浮)聚合等自由基聚合工艺的优缺点,结合其反应特征,综述了近几年来自由基引发剂制备高相对分子质量PAN共聚物的研究进展,探讨了油溶性或水溶性引发剂的选择机制,并对制备高相对分子质量PAN共聚物的理论与实验进行分析。根据单一引发剂制备PAN共聚物的实验结果发现:采用纯水相聚合体系可制得高转化率和高相对分子质量的PAN共聚物;采用混合溶剂沉淀(悬浮)聚合反应体系,可在不降低聚合反应产率的前提下,对PAN共聚物的平均相对分子质量进行合理调节。

关键词: 自由基引发剂, 高相对分子质量聚丙烯腈, 水相体系, 混合溶剂, 引发剂选择, 高品质碳纤维原丝

Abstract:

To develop high quality polyacrylonitrile(PAN) copolymer for PAN-based carbon fiber production,in view of the advantages and disadvantages of different polymerization processes, such as aqueous suspension polymerization, aqueous precipitation polymerization and mixed-solvent precipita-tion (suspension) polymerization, and combined with its reaction characteristics, the research progress of high relative molecular weight PAN copolymer prepared by radical initiator in recent years was reviewed. The research contents include the choice of oil-soluble or water-soluble initiator,theoretical and experimental analysis of the preparation of high molecular weight PAN polymer. From the experiment results of PAN copolymers synthesized by a single initiator, it is understood that PAN copolymers with high conversion and high molecular weight can be obtained by using the water phase polymerization system. On the premise of not reducing the polymerization reaction yield, average molecular weights of PAN copolymers can be reasonably adjusted by using the mixed-solvent precipitated (suspension) polymerization.

Key words: radical initiator, high relative molecular weight polyacrylonitrile, aqueous medium, mixed-solvent, initiator selection, high quality carbon fiber precursor

中图分类号: 

  • TQ342

表1

不同聚合方法制备PAN均聚物的理论计算结果"

聚合方法 极限相对分子质量
均相溶液聚合 2.43×105
水相沉淀/悬浮聚合 17.67×105
混合溶剂沉淀(悬浮)聚合 2.43×105~17.67×105

表2

不同聚合方法制备PAN共聚物的实验结果"

实验
序号
聚合方法 共聚单体
质量配比
单体质
量分
数/%
引发剂 引发剂
质量分
数/%
反应时
间/h
其他反应条件 转化
率/%
PAN黏均
分子量/
105
参考
文献
1 均相溶液
聚合
m(AN):
m(AA)=98:2
25 [AIBN] 1 2 反应温度为60 ℃ 75.1 0.8 [34]
2 水相悬浮
聚合
m (AN):
m (MA)=95:5
25 [AIBN] 1 4 反应温度为60 ℃,引入质量分数为0.5%的PVA 39.5 7.59 [18]
3 水相悬浮
聚合
m (AN):
m (IA)=98:2
17 [AIBN] 0.6 2 反应温度为60 ℃,引入质量分数为0.15%的PVA 52.9 7.5 [19]
4 水相沉淀
聚合
m (AN):
m (IA)=99:1
22 [APS] a:0.8
b:1.2
2 a:无相对分子质量调节剂
b:引入质量分数为0.5%的
n-DDM
a:75.2
b:72.5
a:12.02
b:2.00
[22]
5 水相沉淀
聚合
m (AN):
m (MA)=98:2
22 [APS] 1 3 反应温度为65 ℃ 91.6 7.15 [35]
6 混合溶剂
沉淀聚合
m (AN):
m (IA)=98:2
22 [APS] 0.6 2 反应温度为60 ℃,DMSO和H2O质量比为50:50 86.0 9.23 [36]
7 混合溶剂
沉淀聚合
m (AN):
m (MA)=99:1
20 [AIBN] 0.6 2 反应温度为60 ℃
DMSO和H2O质量比为20:80
48.2 5.6 [11]
8 混合溶剂
悬浮聚合
m (AN):
m (AA)=98:2
25 [AIBN] 1 2 反应温度为60 ℃,引入质量分数为0.1%的PVA,DMF和H2O体积比为10:90 35.7 3.39 [34]
[1] GUPTA A K, PALIWAL D K, BAJAJ P. Acrylic precursors for carbon fibers[J]. Journal of Macromolecular Science: Polymer Reviews, 1991,31(1):1-89.
[2] LIU Y D, KUMAR S. Recent progress in fabrication, structure, and properties of carbon fibers[J]. Polymer Reviews, 2012,52:234-258.
[3] 王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 科学出版社, 2011: 19-72.
WANG Chengguo, ZHU Bo. Polyacrlonitrile-based carbon fibers[M]. Beijing: Science Press, 2011: 19-72.
[4] 贺福. 碳纤维及其应用技术[M]. 北京: 化学工业出版社, 2004: 14-83.
HE Fu. Carbon fiber and its application technology[M]. Beijing: Chemical Industry Press, 2004: 14-83.
[5] 赵亚奇, 杜玲枝, 张俊超, 等. 非均相聚合工艺制备高分子量聚丙烯腈的研究进展[J]. 化工新型材料, 2013,41(1):22-24.
ZHAO Yaqi, DU Lingzhi, ZHANG Junchao, et al. Research advances of heterogeneous polymerization methods used to synthesize high molecular weight polyacrylonitrile[J]. New Chemical Materials, 2013,41(1):22-24.
[6] MAHADEVAIA H, DEMAPPA T, SANGAPP A, et al. Polymerization of acrylonitrile initiated by Ce(IV)-sucrose redox system: a kinetic study[J]. Journal of Applied Polymer Science, 2008,108:3760-3768.
[7] BAJAJ P, PALIWAL D K, GUPTA A K. Acrylonitrile-acrylic acids copolymers: I: synjournal and characterization[J]. Journal of Applied Polymer Science, 1993,49:823-833.
[8] EBDON J R, HUCKERBY T N, HUNTER T C. Free-radical aqueous slurry polymerizations of acrylonitrile: 2: end-groups and other minor structures in polyacrylonitriles initiated by potassium persulfate/sodium bisulfite[J]. Polymer, 1994,35:4659-4664.
[9] BHANU V A, RANGARAJAN P, WILES K, et al. Synjournal and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer, 2002,43:4841-4850.
[10] 杨明远, 张林, 毛萍君. 丙烯腈的水相沉淀连续聚合反应[J]. 中国纺织大学学报, 1998,24(2):97-99.
YANG Mingyuan, ZHANG Lin, MAO Pingjun. Continuous dispersion polymerization of PAN[J]. Journal of China Textile University, 1998,24(2):97-99.
[11] 冯春. 碳纤维用高分子量聚丙烯腈前驱体的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 20-33.
FENG Chun. Study on high molecular weight polyacrylonitrile precursors for carbon fibers[D]. Harbin: Harbin Institute of Technology, 2009: 20-33.
[12] WANG J, ZHANG M Y, FU Z Y, et al. Kinetics on the copolymerization of acrylonitrile with itaconic acid or methyl acrylate in dimethylsulfoxide by NMR spectroscopy[J]. Fibers and Polymers, 2015,16(12):2505-2512.
[13] 曹敏悦, 刘俊男, 汪月, 等. 高分子量二元丙烯腈聚合物的合成及性能[J]. 高分子材料科学与工程, 2017,33(6):42-47.
CAO Minyue, LIU Junnan, WANG Yue, et al. Preparation and properties of high molecular weight acrylonitrile copolymer[J]. Polymer Materials Science & Engineering, 2017,33(6):42-47.
[14] 刘俊男, 曹敏悦, 汪月, 等. 碳纤维原丝用二元丙烯腈聚合物的合成及性能[J]. 高分子材料科学与工程, 2017,33(6):37-41.
LIU Junnan, CAO Minyue, WANG Yue, et al. Preparation and properties of acrylonitrile copolymer used for carbon fiber precursor[J]. Polymer Materials Science & Engineering, 2017,33(6):37-41.
[15] JU A Q, ZHANG K, LUO M, et al. Poly(acrylonitrile-co-3-ammoniumcarboxylate-3-butenoic acid methyl ester): a better carbon fiber precursor than acrylonitrile terpolymer[J]. Journal of Polymer Research, 2014,21:1275-1278.
[16] KRISHNAN G S, THOMAS P, NAVEEN S, et al. Molecular and thermal studies of carbon fiber precursor polymers with low thermal-oxidative stabilization characteristics[J]. Journal of Applied Polymer Science, 2018,135:46381-46395.
[17] 王麒, 张森, 陈惠芳, 等. 以偶氮二异庚腈为引发剂的丙烯腈的低温溶液共聚合[J]. 化学学报, 2010,68(4):2609-2614.
WANG Qi, ZHANG Sen, CHEN Huifang, et al. Solution copolymerization of acrylonitrile initiated by 2,2'-Azobis(2,4-dimethylvaleronitrile) at low tempera-ture[J]. Acta Chimica Sinica, 2010,68(4):2609-2614.
[18] 吴承训, 何建明, 施飞舟. 丙烯腈的悬浮聚合[J]. 高分子学报, 1991(1):121-124.
WU Chengxun, HE Jianming, SHI Feizhou. Suspension polymerization of acrylonitrile[J]. Acta Polymerica Sinica, 1991(1):121-124.
[19] ZHAO Y Q, WANG C G, BAI Y J, et al. Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere[J]. Journal of Colloid and Interface Science, 2009,329:48-53.
[20] 厉雷, 吴承训, 张斌, 等. 超高分子量聚丙烯腈的制备及其合成动力学的研究[J]. 合成纤维, 1997,26(7):5-11.
LI Lei, WU Chengxun, ZHANG Bin, et al. Preparation of UHMW PAN and studies on its reaction kinetics[J]. Synthetic Fiber in China, 1997,26(7):5-11.
[21] 王永伟. 水相沉淀法制备丙烯腈/丙烯酰胺共聚物及其性能研究[D]. 济南: 山东大学, 2010: 25-40.
WANG Yongwei. Study on acrylonitrile/acrylamid synthesized by aqueous deposieted polymerization and the properties of copolymers[D]. Ji'nan: Shandong University, 2010: 25-40.
[22] 赵亚奇. 水相沉淀聚合工艺制备碳纤维用高分子量聚丙烯腈[D]. 济南: 山东大学, 2010: 42-64.
ZHAO Yaqi. Preparation of high molecular weight polyacrylonitrile used to manufacture carbon fibers[D]. Ji'nan: Shandong University, 2010: 42-64.
[23] 赵圣尧, 朱波. 利用双螺杆挤出机溶解聚丙烯腈[J]. 化工学报, 2015,66(5):1970-1975.
ZHAO Shengyao, ZHU Bo. Dissolving polyacrylonitrile with twin-screw extruder[J]. CIESC Journal, 2015,66(5):1970-1975.
[24] 周海萍. 复合引发体系水相沉淀聚合制备聚丙烯腈及特性研究[D]. 济南: 山东大学, 2011: 15-57.
ZHOU Haiping. The properties and applications of composite initiator used in aqueous deposited polymerization for polyacrylonitrile[D]. Ji'nan: Shandong University, 2011: 15-57.
[25] 赵亚奇, 胡继勇, 冯巧, 等. 聚合工艺参数对丙烯腈/丙烯酸甲酯水相沉淀共聚合反应的影响[J]. 化工新型材料, 2013,41(4):109-111.
ZHAO Yaqi, HU Jiyong, FENG Qiao, et al. Effects of polymerization technological parameters on aqueous deposited copolymerization of acrylonitrile and methyl acrylate[J]. New Chemical Materials, 2013,41(4):109-111.
[26] 张旺玺, 李木森, 徐忠波, 等. 丙烯腈与衣康酸在DMSO/H2O中的聚合及聚合物性能表征[J]. 高分子学报, 2003(1):83-87.
ZHANG Wangxi, LI Musen, XU Zhongbo, et al. Study on copolymerization and properties of P(AN-co-IA) synthesized in DMSO/H2O[J]. Acta Polymerica Sinica, 2003(1):83-87.
[27] MOGHADAM S S, BAHRAMI S H. Copolymerization of acrylonitrile-acrylic acid in DMF-water mixture[J]. Iranian Polymer Journal, 2005,14(12):1032-1041.
[28] TSAI J S, LIN C H. The effect of the side chain of acrylate comonomers on the orientation, pore-size distribution, and properties of polyacrylonitrile precursor and resulting carbon fiber[J]. Journal of Applied Polymer Science, 1991,42:3039-3044.
[29] 赵亚奇, 陈琳洁, 聂天风, 等. 混合溶剂沉淀聚合工艺制备AN/AM/IA三元共聚物研究[J]. 化工新型材料, 2016,44(8):56-58.
ZHAO Yaqi, CHEN Linjie, NIE Tianfeng, et al. Preparation of AN/AM/IA terpolymers by mixed-solvent deposited polymerization technology[J]. New Chemical Materials, 2016,44(8):56-58.
[30] CHEN H, QU R J, LIANG Y, et al. Reverse atom transfer radical polymerization of acrylonitrile[J]. Journal of Applied Polymer Science, 2006,99:32-36.
[31] CHEN H, LIU J S, WANG C G. Reverse atom-transfer radical polymerization of acrylonitrile catalyzed by FeCl3/iminodiacetic acid[J]. Polymer International, 2006,55:171-175.
[32] 周吉松, 吕永根, 王小华, 等. 溶液自由基法高分子量聚丙烯腈的合成[J]. 高分子材料科学与工程, 2010,26(4):40-42.
ZHOU Jisong, LÜ Yonggen, WANG Xiaohua, et al. Solution radical controlled polymerization of high average molecular weight polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2010,26(4):40-42.
[33] LI P R, SHAN H Q. Study on polymerization of acrylonitrile with methylacrylate and itaconic acid in mixed solvent[J]. Journal of Applied Polymer Science, 1995,56:877-880.
[34] 陈厚, 张旺玺, 王成国, 等. 悬浮与溶液聚合法合成丙烯腈共聚物的对比[J]. 合成纤维, 2002,31(3):10-13.
CHEN Hou, ZHANG Wangxi, WANG Chengguo, et al. Comparative study of acrylonitrile copolymer prepared by suspension and solution polymerization[J]. Synthetic Fiber in China, 2002,31(3):10-13.
[35] 赵亚奇, 李要山, 余红砖, 等. 水相沉淀聚合法制备不同单体配比的AN/MA共聚物研究[J]. 化工新型材料, 2013,41(6):47-49.
ZHAO Yaqi, LI Yaoshan, YU Hongzhuan, et al. Study on AN/MA copolymers prepared by aqueous deposited polymerization using different monomer ratios[J]. New Chemical Materials, 2013,41(6):47-49.
[36] ZHAO Y Q, LIANG J J, PENG M X, et al. A new process based on mixed-solvent precipitation polymerization to synthesize high molecular weight polyacrylonitrile initiated by ammonium persul-phate[J]. Fibers and Polymers, 2016,17(12):2162-2166.
[1] 董大林, 宾月珍, 蹇锡高. 基于干法纺丝的含二氮杂萘酮结构聚芳醚酮纤维制备及其性能[J]. 纺织学报, 2020, 41(12): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!