纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 121-127.doi: 10.13475/j.fzxb.20190402507
ZHANG Xiaoxia1, LIU Fengkun2, MAI Wei1, MA Chongqi1()
摘要:
为准确预测纺织厂织布车间的织机效率,提出利用BP神经网络、主成分分析结合BP神经网络(PCA-BP)、遗传算法改进BP神经网络(GA-BP)3种模型预测织机效率,并将GA-BP预测模型与传统BP神经网络和PCA-BP预测模型的预测结果进行对比分析。结果表明:GA-BP对原始数据的拟合度最好,相关系数为0.946 87, 比BP增加了6.42%,比PCA-BP增加了2.61%;GA-BP、PCA-BP、BP这3种网络十万入纬的经停仿真值与期望值间的平均误差分别为0.341 2、0.303 1、0.234 1,误差百分率分别为8.63%、7.67%、5.92%,不同网络结构下织机效率仿真预测值与期望值间的平均误差分别为3.010 9、2.688 4、2.118 9,误差百分率分别为3.51%、3.13%、2.47%;3种模型的预测准确度顺序由大到小为GA-BP、PCA-BP、BP。
中图分类号:
[1] |
RAMESH M C, RAJAMANICKAM R, JAYARAMAN S. The prediction of yarn tensile properties by using artificial neural networks[J]. Journal of The Textile Institute, 1995,86:459-469.
doi: 10.1080/00405009508658772 |
[2] | 倪红, 潘永惠. 基于BP神经网络的织物斜向弯曲性能的预测[J]. 纺织学报, 2009,30(2):48-51. |
NI Hong, PAN Yonghui. Prediction of diagonal bending performance of fabrics based on BP neural network[J]. Journal of Textile Research, 2009,30(2):48-51. | |
[3] | 董旭烨, 李竹君. 精益生产工艺提高喷气织机的织造效率[J]. 纺织导报, 2015 (10):97-100. |
DONG Xuye, LI Zhujun. Lean production technology improves weaving efficiency of air-jet looms[J]. China Textile Leader, 2015(10):97-100. | |
[4] | 王少芳, 蔡金锭, 刘庆珍. 基于改进GA-BP混合算法的电力变压器故障诊断[J]. 电网技术, 2004,28(4):30-33. |
WANG Shaofang, CAI Jinding, LIU Qingzhen. Power transformer fault diagnosis based on improved GA-BP hybrid algorithm[J]. Power Grid Technology, 2004,28(4):30-33. | |
[5] |
孙晓刚, 原桂彬, 戴景民. 基于遗传神经网络的多光谱辐射测温法[J]. 光谱学与光谱分析, 2007 (2):213-216.
pmid: 12961851 |
SUN Xiaogang, YUAN Guibin, DAI Jingmin. Multispectral radiation thermometry based on genetic neural network[J]. Spectroscopy and Spectral Analysis, 2007(2):213-216.
pmid: 12961851 |
|
[6] | 司学锋. 基于聚类的BP神经网络在织物染色计算机配色中的应用研究[D]. 青岛:青岛大学, 2009: 32-36. |
SI Xuefeng. Application of BP neural network based on clustering in computer color matching of fabric dyeing[D]. Qingdao: Qingdao University, 2009: 32-36. | |
[7] | LUO Jianfei, LIN Weitie, CAI Xiaolong, et al. Optimization of nitrobacterial fermentation medium based on neural network and genetic algorithms[J]. Chinese Journal of Chemical Engineering, 2012,20(5):950-957. |
[8] |
FENG Yan, CHEN Yimin. Rectification of magnetic force tracker using neural network inaugmented reality system[J]. Journal of Shanghai University(English Edition), 2006(5):431-435.
doi: 10.1007/s11741-006-0086-6 |
[9] | 周松林, 茆美琴, 苏建徽. 基于主成分分析与人工神经网络的风电功率预测[J]. 电网技术, 2011,35(9):128-132. |
ZHOU Songlin, MAO Meiqin, SU Jianhui. Wind power prediction based on principal component analysis and artificial neural network[J]. Power System Technology, 2011,35(9):128-132. | |
[10] | 张文霖. 主成分分析在SPSS中的操作应用[J]. 市场研究, 2005(12):31-34. |
ZHANG Wenlin. Operational application of principal component analysis in SPSS[J]. Market Research, 2005(12):31-34. | |
[11] | 雷彦森. 遗传算法优化的BP神经网络在多模式集成预报的应用研究[D]. 南京:南京信息工程大学, 2018: 47-54. |
LEI Yansen. Application of BP neural network optimized by genetic algorithm in multi-model integrated forecasting[D]. Nanjing: Nanjing University of Information Science & Technology, 2018: 47-54. | |
[12] | 王冰玉, 孙威江, 黄艳, 等. 基于遗传算法的安溪铁观音品质快速评价研究[J]. 光谱学与光谱分析, 2017,37(4):1100-1104. |
WANG Bingyu, SUN Weijiang, HUANG Yan, et al. Rapid evaluation of Tieguanyin Anxi based on genetic algorithm[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1100-1104. | |
[13] | 李勇, 陈晓川, 汪军, 等. 基于BP神经网络的原棉短纤指数预测模型[J]. 纺织学报, 2014,35(11):35-39. |
LI Yong, CHEN Xiaochuan, WANG Jun, et al. Raw cotton staple fiber index prediction model based on BP neural network[J]. Journal of Textile Research, 2014,35(11):35-39. | |
[14] | 刘贵, 于伟东. 基于遗传算法和BP网络的精毛纺粗纱质量预报[J]. 纺织学报, 2009,30(5):28-33. |
LIU Gui, YU Weidong. Prediction of worsted roving quality based on genetic algorithm and BP network[J]. Journal of Textile Research, 2009,30(5):28-33. | |
[15] | 吴耀, 杨瑞峰, 郭晨霞, 等. 基于GA-BP神经网络的光纤位移传感器光强补偿研究[J]. 电光与控制, 2019,26(4):111-114. |
WU Yao, YANG Ruifeng, GUO Chenxia, et al. Research on light intensity compensation of optical fiber displacement sensor based on GA-BP neural network[J]. Electronics Optic and Control, 2019,26(4):111-114. | |
[16] | 邓伟锋, 李振璧. 基于GA优化BP神经网络的微电网蓄电池健康状态评估[J]. 电测与仪表, 2018,55(21):56-60, 85. |
DENG Weifeng, LI Zhenbi. Assessment of battery health in microgrid based on GA optimized BP neural net-work[J]. Electrical Measurement and Instrument, 2018,55(21):56-60, 85. | |
[17] | 查刘根, 谢春萍. 基于免疫遗传算法的BP神经网络在纱线条干预测上的应用[J]. 丝绸, 2019,56(2):19-26. |
ZHA Liugen, XIE Chunping. Application of BP neural network based on immune genetic algorithms in yarn intervention measurement[J]. Journal of Silk, 2019,56(2):19-26. |
[1] | 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144. |
[2] | 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167. |
[3] | 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149. |
[4] | 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159. |
[5] | 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41. |
[6] | 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166. |
[7] | 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194. |
[8] | 黄淇, 周其洪, 张倩, 王绍宗, 范伟, 孙会丰. 基于系统布置设计-遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(03): 84-90. |
[9] | 张旭靖, 王立川, 陈雁. 基于遗传算法的服装缝制生产线平衡优化[J]. 纺织学报, 2020, 41(02): 125-129. |
[10] | 王晓晖, 刘月刚, 孟婥, 孙以泽. 基于遗传算法和神经网络的3D增材印花工艺参数优化[J]. 纺织学报, 2019, 40(11): 168-174. |
[11] | 周捷, 马秋瑞. 基于BP神经网络的运动文胸肩带属性与乳房振幅的函数关系[J]. 纺织学报, 2019, 40(09): 186-191. |
[12] | 孟朔, 潘如如, 高卫东, 王静安, 周利军. 采用主目标进化遗传算法的织造排程研究[J]. 纺织学报, 2019, 40(08): 169-174. |
[13] | 万莉, 贡丽英, 贾敏瑞. 基于主成分分析的智能复合材料结构损伤类型识别[J]. 纺织学报, 2019, 40(05): 53-58. |
[14] | 周捷, 马秋瑞. BP神经网络在塑身内衣压力预测中的应用[J]. 纺织学报, 2019, 40(04): 111-116. |
[15] | 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56. |
|