纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 121-127.doi: 10.13475/j.fzxb.20190402507

• 机械与器材 • 上一篇    下一篇

基于BP神经网络及其改进算法的织机效率预测

张晓侠1, 刘凤坤2, 买巍1, 马崇启1()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.中国纺织信息中心, 北京 100020
  • 收稿日期:2019-04-08 修回日期:2020-05-09 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 马崇启
  • 作者简介:张晓侠(1994—),女,硕士生。主要研究方向为数字化纺织技术。

Prediction of loom efficiency based on BP neural network and its improved algorithm

ZHANG Xiaoxia1, LIU Fengkun2, MAI Wei1, MA Chongqi1()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. China Textile Information Center, Beijing 100020, China
  • Received:2019-04-08 Revised:2020-05-09 Online:2020-08-15 Published:2020-08-21
  • Contact: MA Chongqi

摘要:

为准确预测纺织厂织布车间的织机效率,提出利用BP神经网络、主成分分析结合BP神经网络(PCA-BP)、遗传算法改进BP神经网络(GA-BP)3种模型预测织机效率,并将GA-BP预测模型与传统BP神经网络和PCA-BP预测模型的预测结果进行对比分析。结果表明:GA-BP对原始数据的拟合度最好,相关系数为0.946 87, 比BP增加了6.42%,比PCA-BP增加了2.61%;GA-BP、PCA-BP、BP这3种网络十万入纬的经停仿真值与期望值间的平均误差分别为0.341 2、0.303 1、0.234 1,误差百分率分别为8.63%、7.67%、5.92%,不同网络结构下织机效率仿真预测值与期望值间的平均误差分别为3.010 9、2.688 4、2.118 9,误差百分率分别为3.51%、3.13%、2.47%;3种模型的预测准确度顺序由大到小为GA-BP、PCA-BP、BP。

关键词: BP神经网络, 遗传算法, 主成分分析, 预测模型, 织机效率预测

Abstract:

In order to predict the loom efficiency more accurately in the weaving workshop of textile mills, three models, i.e. BP neural network, principal component analysis combined with BP neural network(PCA-BP) and genetic algorithm modified BP neural network model (GA-BP), were used to predict the loom efficiency. At the same time, the prediction results of the GA-BP were compared with that of the BP neural network and PCA-BP neural network. The results show that the GA-BP has the best fitting degree to the original data, the correlation coefficient is 0.946 87, which is 6.42% higher than BP and 2.61% higher than PCA-BP. The average absolute errors between the simulated output value and the expected loom stoppage values over 100 000 weft insertions are 0.341 2, 0.303 1 and 0.234 1, respectively, for GA-BP, PCA-BP and BP models, corresponding to error percentages 8.63%, 7.67% and 5.92%. The average errors between the predicted and the expected values of the loom efficiency with different network models are 3.010 9, 2.688 4 and 2.118 9, respectively, with error percentages of 3.51%, 3.13%, 2.47%. The order of prediction accuracy of the three models is GA-BP, PCA-BP and BP.

Key words: BP neural network, genetic algorithm, principal component analysis, prediction model, loom efficiency prediction

中图分类号: 

  • TS104.2

图1

网络拓扑结构"

图2

不同隐含层节点数对应R值"

图3

遗传算法改进BP神经网络流程图"

图4

GA-BP神经网络训练、验证、测试和整体输出值"

图5

3种网络仿真输出值"

表1

不同网络十万纬经停仿真值与期望值间的误差"

验证样本
序号
期望值 BP PCA-BP GA-BP
仿真值1 误差1 仿真值2 误差2 仿真值3 误差3
1 4.42 4.384 2 0.035 8 3.976 4 0.443 6 4.412 0 0.008 0
2 5.91 5.323 3 0.586 7 6.180 8 0.270 8 5.206 6 0.703 4
3 6.61 6.337 0 0.273 0 6.351 8 0.258 2 6.421 4 0.188 6
4 1.81 2.042 9 0.232 9 1.674 5 0.135 5 1.807 8 0.002 2
5 2.45 1.646 8 0.803 2 2.588 0 0.138 0 2.364 8 0.085 2
6 3.96 3.522 1 0.437 9 3.516 5 0.443 5 4.371 6 0.411 6
7 1.10 1.593 8 0.493 8 1.610 3 0.510 3 1.358 3 0.258 3
8 1.69 1.857 7 0.167 7 2.271 7 0.581 7 1.751 8 0.061 8
9 1.98 1.857 7 0.122 3 2.271 7 0.291 7 1.751 8 0.228 2
10 6.77 5.882 2 0.887 8 6.877 0 0.107 0 6.194 4 0.575 6
11 6.61 6.717 6 0.107 6 6.685 6 0.075 6 6.415 1 0.194 9
12 2.73 2.639 4 0.090 6 2.167 6 0.562 4 2.437 4 0.292 6
13 1.64 1.917 9 0.277 9 1.567 4 0.072 6 1.878 3 0.238 3
14 3.45 3.095 9 0.354 1 3.479 5 0.029 5 3.256 9 0.193 1
15 5.52 5.406 7 0.113 3 5.124 4 0.395 6 5.507 0 0.013 0
16 5.28 5.045 1 0.234 9 5.490 0 0.210 0 5.275 6 0.004 4
17 5.19 5.454 3 0.264 3 4.745 1 0.444 9 5.175 2 0.014 8
18 4.00 3.342 9 0.657 1 4.484 6 0.484 6 3.260 5 0.739 5
平均误差 0.341 2 0.303 1 0.234 1
误差百分率/% 8.63 7.67 5.92

表2

不同网络织机效率仿真值与期望值间的误差"

验证样本
序号
期望值 BP PCA-BP GA-BP
仿真值1 误差1 仿真值2 误差2 仿真值3 误差3
1 91.93 88.504 0 3.426 0 90.006 8 1.923 2 94.073 9 2.143 9
2 79.48 76.990 0 2.490 0 85.418 5 5.938 5 76.359 6 3.120 4
3 76.38 77.141 8 0.761 8 77.747 7 1.367 7 75.495 9 0.884 1
4 93.41 88.099 5 5.310 5 85.948 9 7.461 1 92.445 8 0.964 2
5 81.02 88.169 2 7.149 2 79.229 8 1.790 2 85.757 5 4.737 5
6 78.88 77.702 4 1.177 6 79.547 8 0.667 8 80.209 5 1.329 5
7 89.90 87.943 2 1.956 8 89.116 3 0.783 7 90.230 6 0.330 6
8 85.83 88.259 7 2.429 7 86.305 4 0.475 4 88.629 8 2.799 8
9 91.29 88.259 7 3.030 3 86.305 4 4.984 6 88.629 8 2.660 2
10 77.47 81.749 9 4.279 9 79.337 2 1.867 2 80.084 9 2.614 9
11 91.63 88.011 9 3.618 1 88.622 6 3.007 4 90.704 6 0.925 4
12 88.17 88.619 3 0.449 3 86.600 5 1.569 5 89.649 2 1.479 2
13 88.81 88.349 7 0.460 3 85.620 3 3.189 7 88.014 9 0.795 1
14 87.57 82.818 7 4.751 3 86.269 0 1.301 0 82.425 0 5.145 0
15 82.33 77.342 4 4.987 6 85.298 4 2.968 4 83.573 5 1.243 5
16 87.01 86.629 4 0.380 6 86.856 1 0.153 9 87.300 5 0.290 5
17 88.11 82.447 3 5.662 7 89.289 8 1.179 8 92.079 7 3.969 7
18 84.48 82.606 1 1.873 9 92.242 3 7.762 3 81.772 6 2.707 4
平均误差 3.010 9 2.688 4 2.118 9
误差百分率/% 3.51 3.13 2.47
[1] RAMESH M C, RAJAMANICKAM R, JAYARAMAN S. The prediction of yarn tensile properties by using artificial neural networks[J]. Journal of The Textile Institute, 1995,86:459-469.
doi: 10.1080/00405009508658772
[2] 倪红, 潘永惠. 基于BP神经网络的织物斜向弯曲性能的预测[J]. 纺织学报, 2009,30(2):48-51.
NI Hong, PAN Yonghui. Prediction of diagonal bending performance of fabrics based on BP neural network[J]. Journal of Textile Research, 2009,30(2):48-51.
[3] 董旭烨, 李竹君. 精益生产工艺提高喷气织机的织造效率[J]. 纺织导报, 2015 (10):97-100.
DONG Xuye, LI Zhujun. Lean production technology improves weaving efficiency of air-jet looms[J]. China Textile Leader, 2015(10):97-100.
[4] 王少芳, 蔡金锭, 刘庆珍. 基于改进GA-BP混合算法的电力变压器故障诊断[J]. 电网技术, 2004,28(4):30-33.
WANG Shaofang, CAI Jinding, LIU Qingzhen. Power transformer fault diagnosis based on improved GA-BP hybrid algorithm[J]. Power Grid Technology, 2004,28(4):30-33.
[5] 孙晓刚, 原桂彬, 戴景民. 基于遗传神经网络的多光谱辐射测温法[J]. 光谱学与光谱分析, 2007 (2):213-216.
pmid: 12961851
SUN Xiaogang, YUAN Guibin, DAI Jingmin. Multispectral radiation thermometry based on genetic neural network[J]. Spectroscopy and Spectral Analysis, 2007(2):213-216.
pmid: 12961851
[6] 司学锋. 基于聚类的BP神经网络在织物染色计算机配色中的应用研究[D]. 青岛:青岛大学, 2009: 32-36.
SI Xuefeng. Application of BP neural network based on clustering in computer color matching of fabric dyeing[D]. Qingdao: Qingdao University, 2009: 32-36.
[7] LUO Jianfei, LIN Weitie, CAI Xiaolong, et al. Optimization of nitrobacterial fermentation medium based on neural network and genetic algorithms[J]. Chinese Journal of Chemical Engineering, 2012,20(5):950-957.
[8] FENG Yan, CHEN Yimin. Rectification of magnetic force tracker using neural network inaugmented reality system[J]. Journal of Shanghai University(English Edition), 2006(5):431-435.
doi: 10.1007/s11741-006-0086-6
[9] 周松林, 茆美琴, 苏建徽. 基于主成分分析与人工神经网络的风电功率预测[J]. 电网技术, 2011,35(9):128-132.
ZHOU Songlin, MAO Meiqin, SU Jianhui. Wind power prediction based on principal component analysis and artificial neural network[J]. Power System Technology, 2011,35(9):128-132.
[10] 张文霖. 主成分分析在SPSS中的操作应用[J]. 市场研究, 2005(12):31-34.
ZHANG Wenlin. Operational application of principal component analysis in SPSS[J]. Market Research, 2005(12):31-34.
[11] 雷彦森. 遗传算法优化的BP神经网络在多模式集成预报的应用研究[D]. 南京:南京信息工程大学, 2018: 47-54.
LEI Yansen. Application of BP neural network optimized by genetic algorithm in multi-model integrated forecasting[D]. Nanjing: Nanjing University of Information Science & Technology, 2018: 47-54.
[12] 王冰玉, 孙威江, 黄艳, 等. 基于遗传算法的安溪铁观音品质快速评价研究[J]. 光谱学与光谱分析, 2017,37(4):1100-1104.
WANG Bingyu, SUN Weijiang, HUANG Yan, et al. Rapid evaluation of Tieguanyin Anxi based on genetic algorithm[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1100-1104.
[13] 李勇, 陈晓川, 汪军, 等. 基于BP神经网络的原棉短纤指数预测模型[J]. 纺织学报, 2014,35(11):35-39.
LI Yong, CHEN Xiaochuan, WANG Jun, et al. Raw cotton staple fiber index prediction model based on BP neural network[J]. Journal of Textile Research, 2014,35(11):35-39.
[14] 刘贵, 于伟东. 基于遗传算法和BP网络的精毛纺粗纱质量预报[J]. 纺织学报, 2009,30(5):28-33.
LIU Gui, YU Weidong. Prediction of worsted roving quality based on genetic algorithm and BP network[J]. Journal of Textile Research, 2009,30(5):28-33.
[15] 吴耀, 杨瑞峰, 郭晨霞, 等. 基于GA-BP神经网络的光纤位移传感器光强补偿研究[J]. 电光与控制, 2019,26(4):111-114.
WU Yao, YANG Ruifeng, GUO Chenxia, et al. Research on light intensity compensation of optical fiber displacement sensor based on GA-BP neural network[J]. Electronics Optic and Control, 2019,26(4):111-114.
[16] 邓伟锋, 李振璧. 基于GA优化BP神经网络的微电网蓄电池健康状态评估[J]. 电测与仪表, 2018,55(21):56-60, 85.
DENG Weifeng, LI Zhenbi. Assessment of battery health in microgrid based on GA optimized BP neural net-work[J]. Electrical Measurement and Instrument, 2018,55(21):56-60, 85.
[17] 查刘根, 谢春萍. 基于免疫遗传算法的BP神经网络在纱线条干预测上的应用[J]. 丝绸, 2019,56(2):19-26.
ZHA Liugen, XIE Chunping. Application of BP neural network based on immune genetic algorithms in yarn intervention measurement[J]. Journal of Silk, 2019,56(2):19-26.
[1] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[2] 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167.
[3] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
[4] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[5] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[6] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[7] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[8] 黄淇, 周其洪, 张倩, 王绍宗, 范伟, 孙会丰. 基于系统布置设计-遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(03): 84-90.
[9] 张旭靖, 王立川, 陈雁. 基于遗传算法的服装缝制生产线平衡优化[J]. 纺织学报, 2020, 41(02): 125-129.
[10] 王晓晖, 刘月刚, 孟婥, 孙以泽. 基于遗传算法和神经网络的3D增材印花工艺参数优化[J]. 纺织学报, 2019, 40(11): 168-174.
[11] 周捷, 马秋瑞. 基于BP神经网络的运动文胸肩带属性与乳房振幅的函数关系[J]. 纺织学报, 2019, 40(09): 186-191.
[12] 孟朔, 潘如如, 高卫东, 王静安, 周利军. 采用主目标进化遗传算法的织造排程研究[J]. 纺织学报, 2019, 40(08): 169-174.
[13] 万莉, 贡丽英, 贾敏瑞. 基于主成分分析的智能复合材料结构损伤类型识别[J]. 纺织学报, 2019, 40(05): 53-58.
[14] 周捷, 马秋瑞. BP神经网络在塑身内衣压力预测中的应用[J]. 纺织学报, 2019, 40(04): 111-116.
[15] 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!