纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 182-187.doi: 10.13475/j.fzxb.20190404806
ZHANG Hengyu1,2, ZHANG Xiansheng3, XIAO Hong2,4(), SHI Meiwu2
摘要:
针对传统电磁屏蔽材料因反射电磁波导致二次污染,现有吸波材料厚重、易腐蚀、柔韧性差、吸波频带窄等问题,归纳总结了新型二维过渡金属碳/氮化合物(MXene)及其柔性复合材料在吸波领域的应用研究。分析了MXene所具有的本征缺陷、官能团、高导电率、大的比表面积对吸波性能的影响,提炼出MXene及其柔性复合材料的吸波机制。指出MXene及其柔性复合材料可以通过改变化合物结构和形态结构、层层自组装、复合改性等方法,制备以吸收电磁波为主的电磁屏蔽材料,为新一代轻质超薄、柔性宽频、吸收型电磁屏蔽材料的发展及其在便携可穿戴电子设备上的应用提供了研究方向。
中图分类号:
[1] | 张丽丽, 陈雁. 防辐射孕妇服电磁防护性能的测试与仿真[J]. 纺织学报, 2011,32(10):108-112. |
ZHANG Lili, CHEN Yan. Test and simulation of electromagnetic protection performance of radiation protection maternity wear[J]. Journal of Textile Research, 2011,32(10):108-112. | |
[2] | 施楣梧, 肖红, 王群. 纺织品电磁学研究及电磁纺织品开发[J]. 纺织学报, 2013,34(2):73-81. |
SHI Meiwu, XIAO Hong, WANG Qun. Electromagnetic research of textiles and development of electromagnetic textiles[J]. Journal of Textile Research, 2013,34(2):73-81. | |
[3] | 梁然然, 肖红, 王妮. 电磁屏蔽织物屏蔽效能理论计算的研究进展[J]. 纺织学报, 2016,37(2):161-169. |
LIANG Ranran, XIAO Hong, WANG Ni. Research progress in theoretical calculation of shielding effectiveness of electromagnetic shielding fabrics[J]. Journal of Textile Research, 2016,37(2):161-169. | |
[4] | 肖红, 施楣梧. 电磁纺织品研究进展[J]. 纺织学报, 2014,35(1):151-157. |
XIAO Hong, SHI Meiwu. Research progress in electromagnetic textiles[J]. Journal of Textile Research, 2014,35(1):151-157. | |
[5] | SHARIF F, ARJMAND M, MOUD A A, et al. Segregated hybrid poly(methylmethacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2017,9(16):14171-14179. |
[6] | SUN R, ZHANG H B, LIU J, et al. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 2017,27(45):1702807. |
[7] | LIN Y, DAI J, YANG H, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018,334:1740-1748. |
[8] |
HAN M, YIN X, HOU Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 2017,9(13):11803-11810.
pmid: 28317374 |
[9] | LING Z, REN C E, ZHAO M, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(47):16676-16681. |
[10] | SUN Z M. Progress in research and development on MAX phases: a family of layered ternary com-pounds[J]. Int Mater Rev, 2011,56(3):143-166. |
[11] | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014,26(7):992-1005. |
[12] | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011,23(37):4248-4253. |
[13] | MASHTALIR O, NAGUIB M, MOCHALIN V, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013,4(1):1716. |
[14] |
MA Y, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor[J]. ACS Nano, 2018,12(4):3209-3216.
doi: 10.1021/acsnano.7b06909 pmid: 29608277 |
[15] | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synjournal and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017,29(18):7633-7644. |
[16] | PENG C, WEI P, CHEN X, et al. A hydrothermal etching route to synjournal of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance[J]. Ceramics International, 2018,44(15):18886-18893. |
[17] | LI J, DU Y L, HUO C, et al. Thermal stability of two-dimensional Ti2C nanosheets[J]. Ceramics International, 2015,41(2):2631-2635. |
[18] | URBANKOWSKI P, ANASORI B, HANTANASIRISAKUL K, et al. 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017,45(9):17722-17730. |
[19] | HU Q, WANG H, WU Q, et al. Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations[J]. International Journal of Hydrogen Energy, 2014,39(20):10606-10612. |
[20] | MESHKIAN R, NASLUND L, HALIM J, et al. Synjournal of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C[J]. Scripta Materialia, 2015,108:147-150. |
[21] |
CAI Y, SHEN J, GE G, et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range[J]. ACS Nano, 2017,12(1) 56-62.
pmid: 29202226 |
[22] | MU W, DU S, LI X, et al. Removal of radioactive palladium based on novel 2D titanium carbides[J]. Chemical Engineering Journal, 2019,358:283-290. |
[23] | XIE X, ZHAO M, ANASORI B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016,26(26):513-523. |
[24] |
GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014,516(7529):78-81.
pmid: 25470044 |
[25] | YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017,27(30):1701264. |
[26] | LIU P, NG V M, YAO Z, et al. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance[J]. Materials Letters, 2018,229:286-289. |
[27] | TONG Y, HE M, ZHOU Y, et al. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time[J]. Journal of Materials Science: Materials in Electronics, 2018,29(10):8078-8088. |
[28] | LIU X, WU J, HE J, et al. Electromagnetic interference shielding effectiveness of titanium carbide sheets[J]. Materials Letters, 2017,205(205):261-263. |
[29] | FENG W, LUO H, WANG Y, et al. Ti3C2 MXene: a promising microwave absorbing material[J]. RSC Advances, 2018,8(5):2398-2403. |
[30] |
SHAHZAD F, ALHABEB M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016,353(6304):1137-1140.
doi: 10.1126/science.aag2421 pmid: 27609888 |
[31] | LIU J, ZHANG H B, SUN R, et al. Hydrophobic,flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding.[J]. Advanced Materials, 2017,29(38):1702367. |
[32] | ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018,11(12):11193-11202. |
[33] | RAAGULAN K, BRAVEENTH R, JANG H J, et al. Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric[J]. Materials, 2018,11(10):1803. |
[34] |
LI X, YIN X, XU H, et al. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band[J]. ACS Applied Materials & Interfaces, 2018,10(40):34524-34533.
doi: 10.1021/acsami.8b13658 pmid: 30192138 |
[35] | 范静静, 王鸿博, 傅佳佳, 等. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019,40(4):90-95. |
FAN Jingjing, WANG Hongbo, FU Jiajia, et al. Preparation of self-assembled carbon nanotube composite conductive cotton fabrics[J]. Journal of Textile Research, 2019,40(4):90-95. | |
[36] |
CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018,12(5):4583-4593.
doi: 10.1021/acsnano.8b00997 pmid: 29709183 |
[37] |
WENG G M, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials, 2018,28(44):1803360.
doi: 10.1002/adfm.v28.44 |
[38] | GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019,26(4):2833-2847. |
[39] | WANG Q, ZHANG H, LIU J, et al. Multifunctional and water‐resistant MXene‐decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019,29(7):1806819. |
[40] | XIE Y, KENTt P R. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers[J]. Physical Review B, 2013,87(23):235441. |
[41] | SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin +1Cn, Tin +1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability[J]. Computational Materials Science, 2012,65:104-114. |
[42] | LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synjournal on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016,2(12):1600255. |
[43] | URBANKOWSKI P ANASORI B, HANTANASIRISAKUL K, 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)[J]. Nanoscale, 2017:10.1039.C7NR06721F. |
[44] |
LI X, YIN X, HAN M, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene[J]. Journal of Materials Chemistry C, 2017,5(30). 7621-7628.
doi: 10.1039/C7TC01991B |
[45] |
HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017,9(23):20038-20045.
doi: 10.1021/acsami.7b04602 pmid: 28534403 |
[1] | 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116. |
[2] | 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104. |
[3] | 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102. |
[4] | 王利君 毛鹏丽. 防电磁辐射聚吡咯/ 棉织物的制备及其性能[J]. 纺织学报, 2018, 39(09): 95-101. |
[5] | 高党鸽 李亚娟 吕斌 马建中. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(08): 171-178. |
[6] | 曲华洋 谢春萍 徐伯俊 刘新金. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018, 39(06): 52-57. |
[7] | 梁然然 肖红 王妮. 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017, 38(09): 51-58. |
[8] | 苏钦城 赵晓明 李卫斌 李建雄. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(2): 155-160. |
[9] | 梁然然 肖红 王妮. 电磁屏蔽织物屏蔽效能理论计算的研究进展[J]. 纺织学报, 2016, 37(2): 161-169. |
[10] | 黄帅 张毅 周志华. 采用因子分析法的服用织物电磁屏蔽性能影响因素分析[J]. 纺织学报, 2016, 37(2): 149-154. |
[11] | 段永洁 谢春萍 刘新金. 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016, 37(09): 31-36. |
[12] | 郑倩雪 刘哲 张永恒 陈海英. 双层防电磁辐射织物的屏蔽效能[J]. 纺织学报, 2016, 37(01): 47-51. |
[13] | 丁志荣 张琰卿 温娇 郝瑞莉 高阳. 绒面吸波织物的制备及其吸波性能[J]. 纺织学报, 2015, 36(10): 44-48. |
[14] | 肖红 施楣梧 钞杉 唐章宏 王群. 机织物有效结构模型的电磁屏蔽效能影响因素[J]. 纺织学报, 2015, 36(07): 43-49. |
[15] | 肖红 唐章宏 王群 施楣梧. 电磁屏蔽织物的导电网格结构及其屏蔽效能的一般影响规律研究[J]. 纺织学报, 2015, 36(02): 35-42. |
|