纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 38-44.doi: 10.13475/j.fzxb.20190406007

• 纤维材料 • 上一篇    下一篇

人造金刚石填充聚酰亚胺树脂基复合材料防刺性能

陈立富1, 于伟东1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2019-04-23 修回日期:2020-01-11 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 于伟东
  • 作者简介:陈立富(1994—),男,硕士生。主要研究方向为防刺材料开发及性能。
  • 基金资助:
    国家重点研发计划资助项目(2016YFC0802802)

Stab resistance of composites with synthetic diamond filled polyimide resin matrix

CHEN Lifu1, YU Weidong1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Fabric Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2019-04-23 Revised:2020-01-11 Online:2020-05-15 Published:2020-06-02
  • Contact: YU Weidong

摘要:

为研究树脂材料的防刺性能及防刺机制,利用手糊成型与热压法成型制备了手糊分层结构和均布结构层2种结构的人造金刚石填充聚酰亚胺树脂基复合树脂片,并探讨了人造金刚石粒径、填充体积分数对树脂片防刺性能的影响。研究结果表明:经过人造金刚石填充的聚酰亚胺树脂片的防刺性能得到提高,并且均布结构层分层复合结构的树脂片的防刺性能更好;随着人造金刚石粒径的减小,树脂片防刺性能出现先减小后增加的趋势,故防刺机制基本在于碰撞概率与树脂基的防挡;比较防刺力和消耗功发现,不同填充体积分数的单层防刺树脂片的防刺性能随人造金刚石填充体积分数的增加而逐渐降低,该趋势的成因在于复合树脂片的脆化与破坏;在颗粒等效粒径为300 μm、体积分数为10%时,其防刺性能最好。

关键词: 填充改性, 人造金刚石, 聚酰亚胺, 防刺性能, 复合材料

Abstract:

In order to study the stab resistance and mechanism of resin materials, two types of synthetic diamond-filled polyimide resin-based composite resin sheets were prepared by hand-forming and hot-pressing, respectively, which were hand lay-up and uniform composites. The effects of particle size and filling volume fraction of synthetic diamond on puncture resistance of the resin sheet are discussed. The results showed that the anti-stab performance of the polyimide resin sheet are improved due to synthetic diamond fillings, and the composite structure make from such resin demonstrates the better stab resistance. It is found that as the number of synthetic diamonds meshes increased, leading to diameter decrease, the stab resistance of the composite decreases first followed by an increase. It is understood that the stab-proof mechanism is basically associated to the collision probability and the resin-based anti-blocking. From analyzing the stab resistance and the work done, the stab resistance of the resin sheet gradually decreases with the increase of the volume fraction of the artificial diamond filling, which is believed to be caused by embrittlement and destruction of the composite resin sheet. In particular, the resin has the optimal stab resistance when the particle diameter is 300 μm and the volume fraction is 10% in the sheet.

Key words: filling modification, synthetic diamond, polyimide, stab resistance, composite material

中图分类号: 

  • TS941

图1

I型多层人造金刚石-PI复合树脂片制备工艺流程"

图2

II型多层人造金刚石-PI复合树脂片制备工艺流程"

图3

人造金刚石(×50)"

图4

刀具放大50倍刺扎前后对比图"

图5

人造金刚石完全阻挡刀尖"

图6

临界条件下的圆形人造金刚石重复单元"

表1

必然碰撞时人造金刚石体积分数分布表"

粒径/
μm
r/
μm
S/
104 μm2
S1/
104 μm2
Vf/
%
300.0 150.00 28.29 14.130 49.95
150.0 77.50 8.89 3.580 40.27
75.5 38.25 2.89 0.920 31.83
46.0 23.00 1.50 0.330 22.00
30.0 15.00 0.94 0.140 14.89
3.0 1.50 0.28 0.001 0.50

图7

2种不同结构复合树脂片截面图(×50)"

图8

不同结构树脂片的准静态防刺性能"

表2

防刺材料规格与准静态防刺性能"

树脂片
种类
厚度/
mm
面密度/
(g·m-2)
准静态
最大防
刺力/N
准静态
防刺性能/
(N·g·m2)
准静态
模量/
(N·cm-1)
平均单层
树脂片消
耗功/J
纯PI 2.65 2 600 197.95 0.076 562.8 0.226
I型 2.80 2 600 310.00 0.119 686.3 0.359
II型 2.18 2 600 270.68 0.104 418.9 0.336

图9

单层树脂片防刺性能测试"

图10

体积分数为10%单层树脂片防刺性能"

图11

单层不同体积分数树脂片的准静态防刺性能测试"

表3

国际防刺性能等级划分"

防护
等级
撞击能量
E1/J
E1允许穿透的
最大深度
/mm
撞击能量
E2/J
E2允许穿透
的最大深度
/mm
1 24 7 36 20
2 33 7 50 20
3 43 7 65 20

表4

复合树脂片规格与动态防刺性能"

树脂片
种类
厚度/
mm
等效
粒径/
μm
体积
分数/
%
面密度/
(g·m-2)
刀具最大
防刺力/
N
刺穿
长度
L/mm
I型 2.65 0 0 2 600 372 25.08
II型 3.02 300 30 2 600 424 17.28
II型 2.02 300 50 2 600 379 20.36
II型 2.78 155 30 2 600 422 18.35
II型 2.65 155 50 2 600 446 21.47
II型 2.89 75.5 30 2 600 416 22.39
II型 2.32 75.5 50 2 600 422 24.52

表5

I型防刺材料规格与动态防刺性能"

厚度/
mm
等效
粒径/
μm
体积
分数/
%
面密度/
(g·m-2)
刀具
最大防
刺力/N
刺穿
长度
L/mm
4.10 0 0 2 600 372 25.08
3.30 300 10 2 600 496 10.28
3.50 300 30 2 600 643 6.87
3.40 300 50 2 600 867 12.37
[1] 郭静荷, 姜亚明. 防刺个体装甲材料的发展与现状[J]. 产业用纺织品, 2004(6):5-8.
GUO Jinghe, JIANG Yaming. Development and present situation of stab-resistant individual armor material[J]. Technical Textiles, 2004(6):5-8.
[2] 赵玉梅. 柔性复合防刺服的研究[D]. 上海:东华大学, 2005: 2-31.
ZHAO Yumei. Study of complex stab-resistant body Armor[D]. Shanghai: Donghua University, 2005: 2-31.
[3] 顾肇文. 柔性复合防刺服机制研究[J]. 纺织学报, 2006,27(8):80-84.
GU Zhaowen. Study on the principle of soft complex stab-resistant body armor[J]. Journal of Textile Research, 2006,27(8):80-84.
[4] JOHNSON A, BINGHAM G A, WIMPENNY D I. Additive manufactured textiles for high-performance stab resistant applications[J]. Rapid Prototyping Journal, 2013,19(3):199-207.
[5] YANG Shasha, DU Zhaoqun. Analysis of stabbing performance of UHMWPE fabric at different angles[J]. Advanced Materials Research, 2013,821/822(9):223-227.
[6] KIM H, NAM I. Stab-resisting behavior of polymeric resin reinforced p-aramid fabrics[J]. Journal of Applied Polymer Science, 2011,123(5):2733-2742.
[7] 晏义伍, 曹海琳, 赵金华. 软体防刺复合材料的设计与优化[J]. 复合材料学报, 2013,30(2):247-253.
YAN Yiwu, CAO Hailin, ZHAO Jinhua. Design and optimization of soft stab resistant armor composites[J]. Acta Materiae Compositaes Sinica, 2013,30(2):247-253.
[8] 董继萍, 刘晓艳, 于伟东. 织物表面防刺割树脂片形状的确定[J]. 纺织学报, 2017,38(12):60-64.
DONG Jiping, LIU Xiaoyan, YU Weidong. Determination about geometry of stab-resistant resin flakes on surface of fabric[J]. Journal of Textile Research, 2017,38(12):60-64.
[9] 刘娟, 王新厚. 树脂成型柔性防刺材料空隙率对防刺性能的影响[J]. 产业用纺织品, 2015,33(5):7-10.
LIU Juan, WANG Xinhou. Effect of void ratio of resin-formed flexible stab-resistant materials on stab resist-ance[J]. Technical Textiles, 2015,33(5):7-10.
[10] 董继萍. 树脂片防刺织物的结构设计与防护性能研究[D]. 上海:东华大学, 2018: 1-46.
DONG Jiping. Structural design and protective performance of the stab resistant fabric with resin flakes[D]. Shanghai: Donghua University, 2018: 1-46.
[11] 练滢, 刘春娜, 王新厚. 树脂成型柔性防刺材料的防刺性能研究[J]. 产业用纺织品, 2016,34(10):21-25.
LIAN Ying, LIU Chunna, WANG Xinhou. Study on the stab-resistance performance of flexible stab-resistance materials by means of resin molding[J] Technical Textiles, 2016,34(10):21-25
[12] 张政, 刘晓艳, 于伟东. 涂层防刺织物的制备及其防刺机制[J]. 纺织学报, 2018,39(3):108-113.
ZHANG Zheng, LIU Xiaoyan, YU Weidong. Preparation and stab-resistant mechanism of coated stab-resistant fabric[J]. Journal of Textile Research, 2018,39(3):108-113.
[13] JIA Junhong, ZHOU Haibin, GAO Shengqiang. A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition[J]. Materials Science & Engineering A, 2003,356(1):48-53.
[14] 邢京京, 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017,38(8):55-61.
XING Jingjing, QIAN Xiaoming. Stab-resistant mechanism of fabrics and influence of cutter shape on stab resistance[J]. Journal of Textile Research, 2017,38(8):55-61.
[1] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[2] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[3] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[4] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[5] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[6] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[7] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[8] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[9] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[10] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[11] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[12] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[13] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[14] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[15] 王翔华, 成玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!