纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 20-25.doi: 10.13475/j.fzxb.20190406406

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/聚氨酯透明膜的制备及其性能

李国庆1, 李平平1, 刘瀚霖1, 李妮1,2()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2019-04-23 修回日期:2019-12-18 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 李妮
  • 作者简介:李国庆(1994—),男,硕士生。主要研究方向为多孔纤维膜结构和性能数值模拟。
  • 基金资助:
    浙江理工大学青年创新专项(2019Q024);浙江理工大学2019年优秀研究生学位论文培育基金项目(14090131731930)

Preparation and properties of polyacrylonitrile/polyurethane transparent film

LI Guoqing1, LI Pingping1, LIU Hanlin1, LI Ni1,2()   

  1. 1. College of Textile Science and Engineering(International Silk Institute), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2019-04-23 Revised:2019-12-18 Online:2020-03-15 Published:2020-03-27
  • Contact: LI Ni

摘要:

为改善静电纺聚丙烯腈/聚氨酯(PAN/PU)纳米纤维透明膜的力学性能,在静电纺丝过程中采用旋转滚筒作为接收装置,并经热处理的方法制备取向性PAN纳米纤维增强PU基(PANNFs/PU)透明多孔膜。借助扫描电子显微镜、红外光谱仪、多功能拉伸仪表征纤维膜的形态结构和力学性能,并讨论了不同纺丝转速对PANNFs/PU膜力学性能的影响。结果表明:随着接收滚筒转速的提高,PAN/PU多孔膜中纤维沿着滚筒旋转方向排列的趋势越来越明显;当滚筒转速为1 500 r/min时,PAN/PU多孔膜沿滚筒旋转方向断裂应力为103.3 MPa;当PANNFs-PU透明膜沿滚筒旋转方向的断裂应力达到306.8 MPa,垂直滚筒旋转方向的断裂应变达到163.1%,PANNFs/PU透明膜的力学性能相比于PAN/PU多孔膜显著提高。

关键词: 纳米纤维, 聚丙烯腈, 聚氨酯, 多孔膜, 透明膜, 静电纺丝

Abstract:

This research aims to improve the mechanical properties of polyacrylonitrile/polyurethane(PAN/PU)nanofiber transparent membrane. During electrospinning, rotating drum was used as collector. Transparent PU film reinforced by PAN nanofibers (PANNFs/PU film)were prepared by following heating treatment. The morphology,structure and mechanical properties of the films were characterized by scanning electron microscope, infrared spectrometer, multifunctional stretcher. The results show that the fiber arrangement in PAN/PU films along the drum rotating direction becomes obvious with the increase of drum rotating speed. The mechanical properties of PANNFs/PU film are improved significantly through heat treatment. When the rotating speed is 1 500 r/min, the breaking stress of the PAN/PU membrane along the drum rotating direction is 103.3 MPa, and that of the PANNFs-PU film along the drum rotating direction reaches 306.8 MPa coupled with a high breaking strain of 163.1%. Compared with PAN/PU porous membrane, the mechanical properties of PANNFs/PU transparent membrane are significantly improved.

Key words: nanofiber, polyacrylonitrile, polyurethane, porous film, transparent films, electrospinning

中图分类号: 

  • TQ342.93

图1

膜的形貌变化"

图2

PAN纳米纤维多孔膜、PU纳米纤维多孔膜、PAN/PU取向多孔膜、PANNFs/PU透明膜的红外谱图"

图3

不同转速条件下PAN/PU取向多孔膜的扫描电镜照片"

表1

不同转速条件下PAN/PU取向多孔膜中纤维直径分布"

转速/
(r·min-1)
纤维直径
最大值/nm 最小值/nm 平均值/nm CV值/%
0 418.62 248.45 315.89 11.53
500 393.48 242.29 308.87 9.83
1 000 403.59 268.11 324.58 10.20
1 500 411.07 224.82 319.63 13.54
2 000 437.04 246.55 329.63 12.65

图4

不同转速条件下制备的PAN/PU取向多孔膜的力学性能"

表2

不同转速条件下多孔膜和透明膜的力学性能"

转速/
(r·min-1)
PAN/PU PANNFs/PU
断裂应力/MPa 断裂应变/% 初始模量/GPa 断裂应力/MPa 断裂应变/% 初始模量/GPa
平行 垂直 平行 垂直 平行 垂直 平行 垂直 平行 垂直 平行 垂直
0 77.1 128.6 0.27 197.8 307.6 1.26
500 79.4 41.4 117.0 112.6 0.35 0.15 222.8 151.1 81.7 103.4 1.66 1.12
1 000 94.8 32.7 101.6 121.3 0.43 0.11 264.1 163.9 35.5 87.3 2.78 1.06
1 500 103.3 23.2 134.5 146.1 0.59 0.13 306.8 159.8 40.1 163.1 3.11 0.86
2 000 86.8 19.6 112.4 153.7 0.24 0.09 293.7 158.3 35.4 131.7 3.47 1.04

图5

不同转速条件下制备的PANNFs/PU透明膜的力学性能"

图6

PANNFs/PU透明膜取向示意图"

[1] 何吉欢, 李晓霞, 田丹. 气泡纺技术及其纳米纤维的工业化生产[J]. 纺织学报, 2018,39(12):175-180.
HE Jihuan, LI Xiaoxia, TIAN Dan. Bubble electrospinning and industrial production of nano-fiber[J]. Journal of Textile Research, 2018,39(12):175-180.
[2] 陈明军, 张有忱, 杜琳, 等. 聚合物熔体法制备纳米纤维技术研究现状[J]. 纺织学报, 2018,39(12):166-174.
CHEN Mingjun, ZHANG Youchen, DU Lin, et al. Review on processes of nanofiber prepared by polymer melt method[J]. Journal of Textile Research, 2018,39(12):166-174.
[3] 李晴碧, 刘琴, 顾迎春, 等. 复合静电纺超细聚丙烯腈纳米纤维的制备[J]. 纺织学报, 2017,38(11):21-26,31.
LI Qingbi, LIU Qin, GU Yingchun, et al. Preparation of ultrafine polyacrylonitrile nanofibers via composite electrospinning[J]. Journal of Textile Research, 2017,38(11):21-26,31.
[4] KONWARH R, KARAK N, MISRA M. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications[J]. Biotechnology Advances, 2013,31(4):421-437.
[5] CAO J, CHENG Z, KANG L, et al. Novel anti-fouling polyethersulfone/polyamide 66 membrane preparation for air filtration by electrospinning[J]. Materials Letters, 2017,192:12-16.
[6] KAMPALANONWAT P, SUPAPHOL P. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal[J]. Acs Applied Materials & Interfaces, 2010,2(12):3619-3627.
[7] ARRAS M L, GRASL C, BERGMEISTER H, et al. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes[J]. Science & Technology of Advanced Materials, 2012,13(3):035008.
[8] FANG X, MA H, XIAO S, et al. Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications[J]. Journal of Materials Chemistry, 2011,21(12):4493-4501.
[9] 高雄, 胡侨乐, 马颜雪, 等. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017,38(9):66-71.
GAO Xiong, HU Qiaole, MA Yanxue, et al. Bending properties comparison of thick-section carbon fiber composites based on different three-dimensional woven structures[J]. Journal of Textile Research, 2017,38(9):66-71.
[10] FENNESSEY S F, FARRIS R J. Fabrication of aligned and molecularly oriented electrospun polyacryl0njtrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004,45(12):4217-4225.
[11] 陆波, 孙伟东, 权亚博, 等. 电纺纳米纤维增强聚合物复合材料的研究进展[J]. 合成树脂及塑料, 2013,30(3):80-84.
LU Bo, SUN Weidong, QUAN Yabo, et al. Research progress of electrospun nanofiber reinforced polymer composites[J]. China Synthetic Resin and Plastics, 2013,30(3):80-84.
[12] CHEN Lusong, HUANG Zhengming, DONG Cuohua, et al. Development of a transparent PMMA composite reinforced with nanofibers[J]. Polymer Composites, 2009,30(3):239-247.
[13] WEISENBERGER M C, GRULKE E A, JACQUES D, et al. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers[J]. Journal of Nanoscience & Nanotechnology, 2003,3(6):535-539.
[14] ZHAO Y, WANG X, ZHANG Q, et al. Preparation of transparent polyacrylonitrile reinforced polyurethane film and application as temperature monitor[J]. Polymer Engineering and Science, 2018,58(11):1905-1910.
[15] 马启学, 唐爱玲. 红外光谱在PAN氧化纤维结构测定中的应用[J]. 石化技术与应用, 1991(3):187-190.
MA Qixue, TANG Ailing. Application of infrared spectroscopy in determination of PAN oxidation fiber structure[J]. Petrochemical Technology & Application, 1991(3):187-190.
[16] 杨友红, 王云发, 闻春香. 红外光谱法鉴别PVC革和PU革[J]. 产业用纺织品, 2010,28(2):44-47.
YANG Youhong, WANG Yunfa, WEN Chunxiang. The discrimination of PU leather and PVC leather by infrared spectroscopy[J]. Technical Textiles, 2010,28(2):44-47.
[17] 王敏超, 熊杰. 取向排列丝素蛋白/聚己内酯复合纳米纤维膜的双轴向拉伸性能[J]. 纺织学报, 2015,36(4):31-36.
WANG Minchao, XIONG Jie. Mechanical properties of electrospun aligned silk fibroin /poly(ε-caprolactone) nanofibrous membranes under biaxial tensile loads[J]. Journal of Textile Research, 2015,36(4):31-36.
[18] 王曙东, 李双燕, 张幼珠, 等. 静电纺PLA取向超细纤维膜的结构与性能[J]. 产业用纺织品, 2009,27(9):8-11.
WANG Shudong, LI Shuangyan, ZHANG Youzhu, et al. Structure and properties of electrospun aligned PLA ultrafine fibers[J]. Technical Textiles, 2009,27(9):8-11.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 方佳璐, 陈明艳, 黄紫荆. 漂浮自救泳衣设计开发[J]. 纺织学报, 2020, 41(12): 118-123.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[10] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[11] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[12] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[13] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[15] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!