纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 93-101.doi: 10.13475/j.fzxb.20190501408

• 染整与化学品 • 上一篇    下一篇

亚麻粗纱的超临界CO2煮漂工艺

张娟1,2, 郑环达2, 乔燕1, 高世会1,2, 郑来久2()   

  1. 1.辽宁轻工职业学院, 辽宁 大连 116100
    2.大连工业大学 辽宁省超临界CO2无水染色重点实验室, 辽宁 大连 116034
  • 收稿日期:2019-05-08 修回日期:2020-02-26 出版日期:2020-07-15 发布日期:2020-07-24
  • 通讯作者: 郑来久
  • 作者简介:张娟(1985—),女,讲师,博士。主要研究方向为超临界二氧化碳煮漂技术。
  • 基金资助:
    国家自然科学基金青年基金项目(21908015);辽宁省协同创新群体专项项目(2016J003);辽宁省博士科研启动基金项目(2020-BS-295)

Scouring and bleaching process for flax roves using supercritical CO2

ZHANG Juan1,2, ZHENG Huanda2, QIAO Yan1, GAO Shihui1,2, ZHENG Laijiu2()   

  1. 1. Liaoning Vocational College of Light Industry, Dalian, Liaoning 116100, China
    2. Liaoning Provincial Key Laboratory of Supercritical CO2 Waterless Dyeing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2019-05-08 Revised:2020-02-26 Online:2020-07-15 Published:2020-07-24
  • Contact: ZHENG Laijiu

摘要:

针对亚麻粗纱传统煮漂工序的高耗水和环境污染问题,利用超临界CO2代替水介质对亚麻粗纱进行煮漂。系统研究了复配生物酶(木聚糖酶和纤维素酶)质量分数、温度、压力和时间对亚麻粗纱白度的影响,并利用响应面分析法对粗纱煮漂工艺条件进行优化,通过Box-Behnken中心组合实验和响应面法研究了自变量及其交互作用对白度的影响,得到粗纱白度的二次多项式回归方程的预测模型。确定了亚麻粗纱超临界CO2煮漂最佳工艺条件:复配生物酶质量分数为3%,温度为50 ℃,压力为13 MPa,时间为60 min。在最优工艺条件下,超临界CO2煮漂亚麻粗纱与原样相比,白度达到40.8%、残胶率为16.68%、断裂强度为17.12 cN/tex、断裂伸长率为4.23%、分裂度为1 072 Nm。与传统煮漂效果相比,超临界CO2煮漂工艺仍存在一定差距,需进一步提高。

关键词: 亚麻粗纱, 煮练, 漂白, 前处理, 超临界CO2, 响应面优化, 白度

Abstract:

In order to solve the problem of high water consumption and environmental pollution in conventional scouring and bleaching process of flax roves, scouring and bleaching technology for flax roves using supercritical CO2 as the medium instead of water was proposed. The effects of mass fraction of compound biological enzymes (xylanase and cellulase), temperature, pressure and time on the whiteness of flax roves were systematically studied using supercritical CO2, and the process conditions of scouring and bleaching were optimized by responsive surface analysis. The influence of the independent variables and their interaction on the whiteness was investigated using Box-Benhnken center composite design and responsive surface method, and the prediction model in a form of quadratic polynomial regression equation was obtained. An optimized process for scouring and bleaching of flax roves was recommended with a mass fraction of compound biological enzymes of 3%, a temperature of 50 ℃, a pressure of 13 MPa as well as a treatment time of 60 min in supercritical CO2. Moreover, under the optimum technical conditions, the properties of scoured and bleached roves under the supercritical CO2 condition were compared with that of original sample. The whiteness, the residual gum content, the breaking strength, the elongation at break and the split degree of the flax roves are 40.8%, 16.68%, 17.12 cN/tex, 4.23% and 1 072 Nm, respectively. However, there is still a certain gap in comparison with the traditional method, which needs to be further improved.

Key words: flax roves, scouring, bleaching, pre-treatment, supercritical CO2, responsive surface optimization, whiteness

中图分类号: 

  • TS192.552

表1

响应面因素水平编码表"

水平 因素
生物酶
质量分数x1/%
温度x2/
压力x3/
MPa
时间x4/
min
-1 1 40 10 30
0 2 50 15 60
1 3 60 20 90

图1

加水量对复配生物酶活性和粗纱白度的影响"

表2

响应面实验分析设计及结果"

序号 x1 x2 x3 x4 Y/%
1 -1 0 -1 0 37.1
2 0 0 1 1 39.5
3 0 0 0 0 41.5
4 0 0 1 -1 38.3
5 0 1 1 0 37.7
6 0 1 0 1 37.1
7 0 0 0 0 39.7
8 0 -1 1 0 36.4
9 -1 0 0 1 38.6
10 -1 1 0 0 35.9
11 0 1 0 -1 36.3
12 -1 0 0 -1 35.5
13 0 0 -1 -1 36.7
14 0 -1 0 -1 33.6
15 1 -1 0 0 35.8
16 0 0 -1 1 37.5
17 1 0 -1 0 39.4
18 -1 -1 0 0 30.1
19 0 -1 0 1 33.4
20 -1 0 1 0 36.9
21 1 1 0 0 37.2
22 0 0 0 0 39.8
23 0 0 0 0 39.5
24 1 0 0 1 40.8
25 0 0 0 0 41.4
26 0 -1 -1 0 29.6
27 1 0 0 -1 40.8
28 0 1 -1 0 37.6
29 1 0 1 0 41.2

表3

二次回归模型的方差分析结果"

方差
来源
平方和 自由度 均方 F P 显著性
模型 241.00 14 17.21 20.44 < 0.000 1 ***
x1 37.10 1 37.10 44.05 < 0.000 1 ***
x2 43.70 1 43.70 51.89 < 0.000 1 ***
x3 12.20 1 12.20 14.49 0.001 9 **
x4 2.71 1 2.71 3.21 0.094 6
x12 4.35 1 4.35 5.17 0.039 3 **
x22 125.25 1 125.25 148.71 < 0.000 1 ***
x32 6.41 1 6.41 7.61 0.015 4 *
x42 6.09 1 6.09 7.23 0.017 6 *
x1x2 4.84 1 4.84 5.75 0.031 0 *
x1x3 1.00 1 1.00 1.19 0.294 3
x1x4 2.40 1 2.40 2.85 0.113 4
x2x3 11.22 1 11.22 13.32 0.002 6 **
x2x4 0.25 1 0.25 0.30 0.594 5
x3x4 0.04 1 0.04 0.047 0.830 6
剩余 11.79 14 0.84
失拟 7.92 10 0.79 0.82 0.638 3
误差 3.87 4 0.97
总和 252.79 28
R2 0.953 4
调整R2 0.906 7

图2

Y=f(x1, x2)的响应面图"

图3

Y=f(x2, x3)的响应面图"

图4

Y=f(x2, x4)的响应面图"

图5

复配生物酶质量分数对白度的影响"

表4

不同煮漂方法下亚麻粗纱的性能"

煮漂
方法
白度/
%
残胶率/
%
断裂强度/
(cN·tex-1)
断裂
伸长率/%
分裂度/
Nm
超临界CO2+
复配生物酶
40.8 16.68 17.12 4.23 1 072
传统方法 68.6 15.92 16.93 3.95 1 249
原样 15.5 21.76 16.28 2.04 575
[1] 张娟, 高世会, 施楣梧, 等. 亚麻粗纱超临界二氧化碳无水煮漂技术研究进展[J]. 纺织学报, 2017,38(5):172-178.
ZHANG Juan, GAO Shihui, SHI Meiwu, et al. Research development on the scouring and bleaching of flax rove in supercritical CO2[J]. Journal of Textile Research, 2017,38(5):172-178.
[2] 张娟. 亚麻粗纱超临界二氧化碳无水煮漂技术研究[D]. 大连: 大连工业大学, 2017: 11-13.
ZHANG Juan. Scouring and bleaching technology of flax rove in supercritical carbon dioxide[D]. Dalian: Dalian Polytechnic University, 2017: 11-13.
[3] ZHANG Juan, ZHENG Huanda, ZHENG Laijiu. Effect of treatment temperature on structures and properties of flax rove in supercritical carbon dioxide[J]. Textile Research Journal, 2018,88(2):155-166.
[4] MATTIA O, YVES M G. Scouring of flax rove with the aid of enzymes[J]. Enzyme and Microbial Technology, 2004,34:177-186.
[5] DENIZ S O, OZLEM Y C. Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2[J]. Cellulose, 2015,22:3619-3631.
[6] 彭源德, 刘正初, 唐守伟, 等. 超临界CO2介质的苎麻酶法脱胶研究初探[J]. 纺织学报, 2006,27(8):4-6.
PENG Yuande, LIU Zhengchu, TANG Shouwei, et al. Preliminary study on ramie retting in supercritical-CO2 with enzymes[J]. Journal of Textile Research, 2006,27(8):4-6.
[7] ZHANG Juan, QIAO Yan, ZU Xiuxia, et al. Cleaner strategy for the scouring and bleaching of flax rove with enzymes in supercritical carbon dioxide[J]. Journal of Cleaner Production, 2019,210:759-766.
[8] XU J, XIE X F, WANG J X, et al. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals[J]. Green Chemistry, 2016,18(10):3124-3138.
[9] 赵欣, 罗晶琨, 赵彦松, 等. 一种新型亚麻粗纱前处理工艺的研究[J]. 印染助剂, 2016,33(4):46-50.
ZHAO Xin, LUO Jingkun, ZHAO Yansong, et al. Study on a novel linen roving pretreatment process[J]. Textile Auxiliaries, 2016,33(4):46-50.
[10] RODRIGO M, SANZ M T, ÁNGELA G S. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015,97:51-62.
[11] HAMPSON J W, FOGLIA T A. Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor[J]. Journal of the American Oil Chemists' Society, 1999,76:777-781.
[12] 赵玉萍, 张娟, 郭雅琳, 等. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012,33(7):24-30.
ZHAO Yuping, ZHANG Juan, GUO Yalin, et al. Process optimization of ultrasonic washing of feather fibers based on response surface method[J]. Journal of Textile Research, 2012,33(7):24-30.
[13] JING C L, DONG X F, TONG J M. Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method[J]. Molecules, 2015,20(9):15550-15571.
doi: 10.3390/molecules200915550 pmid: 26343617
[14] ALI H, BAHMAN F, AZAR A R. Efficient response surface method for high-dimensional structural reliability analysis[J]. Structural Safety, 2017,68:15-27.
[15] ANBARASAN S, WAHLSTRÖM R, HUMMEL M, et al. High stability and low competitive inhibition of thermophilic thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids[J]. Applied Microbiology & Biotechnology, 2017,101(4):1487-1498.
doi: 10.1007/s00253-016-7922-9 pmid: 27770179
[16] CHANDRALATA R, USHA M V R, MISHRA R. Xylanases of marine fungi of potential use for biobleaching of paper pulp[J]. Journal of Industrial Microbiology & Biotechnology, 2004,31:433-441.
doi: 10.1007/s10295-004-0165-2 pmid: 15372306
[17] JIAN Shi, PATTATHIL S, PARTHASARATHI R, et al. Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency[J]. Green Chemistry, 2016,18(18):4884-4895.
[18] BORUAH P, DOWARAH P, HAZARIKA R, et al. Xylanase from penicillium meleagrinum var. viridiflavum: a potential source for bamboo pulp bleaching[J]. Journal of Cleaner Production, 2016,116:259-267.
doi: 10.1016/j.jclepro.2015.12.024
[19] VALLS C, VIDAL T. RONCERO M B. Boosting the effect of a laccase-mediator system by using a xylanase stage in pulp bleaching[J]. Journal of Hazardous Materials, 2010,177(1-3):586-592.
doi: 10.1016/j.jhazmat.2009.12.073 pmid: 20116167
[20] 彭源德, 唐守伟, 杨喜爱, 等. 超临界CO2介质的苎麻脱胶酶的影响因素[J]. 纺织学报, 2007,28(5):74-76.
PENG Yuande, TANG Shouwei, YANG Xiai, et al. Factors influencing retting of ramie with enzymes in SC-CO2[J]. Journal of Textile Research, 2007,28(5):74-76.
[21] ALI S, KHATRI Z, KHATRI A, et al. Integrated desizing bleaching reactive dyeing process for cotton towel using glucose oxidase enzyme[J]. Journal of Cleaner Production, 2014,66:562-567.
doi: 10.1016/j.jclepro.2013.11.035
[22] ZHANG Juan, ZHENG Huanda, ZHENG Laijiu. A novel eco-friendly scouring and bleaching technique of flax rove using supercritical carbon dioxide fluid[J]. Journal of Engineered Fibers and Fabrics, 2017,12(4):44-51.
[23] 王转, 李新平, 杜敏, 等. 内切纤维素酶预处理对漂白马尾松纤维形态和结构的影响[J]. 中国造纸, 2015,34(3):11-16.
WANG Zhuan, LI Xinping, DU Min, et al. Study on fiber modification of bleached masson pine by endo-cellulase and its mechanism[J]. China Pulp & Paper, 2015,34(3):11-16.
[24] AKIN D E, MORRISON III W H, GAMBL G R. Effect of retting enzymes on the structure and composition of flax cell walls[J]. Textile Research Journal, 1997,67(4):279-287.
doi: 10.1177/004051759706700407
[25] 易春锋. 亚麻粗纱生物酶与化学联合煮漂工艺研究[D]. 上海: 东华大学, 2017: 38-42.
YI Chunfeng. The study on combination of enzyme and chemical scouring and bleaching process of flax roving[D]. Shanghai: Donghua University, 2017: 38-42.
[1] 向忠, 王宇航, 吴金波, 钱淼, 胡旭东. 过氧化氢检测方法研究进展[J]. 纺织学报, 2020, 41(10): 197-204.
[2] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[3] 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90.
[4] 高晶, 王璐. 前处理工艺对毛/涤织物疏水改性效果的影响[J]. 纺织学报, 2019, 40(09): 91-96.
[5] 张帆, 张儒, 周文常, 周辉, 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108.
[6] 唐文君, 彭明华, 向中林, 邵冬燕, 倪佳东, 许长海. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(02): 125-129.
[7] 吴臣仁, 吕汪洋, 陈文兴. 铜配合物在棉针织物低温中性漂白中的应用[J]. 纺织学报, 2019, 40(01): 91-96.
[8] 黄益 李思琪 阮斐斐 李博 邵建中. 卟啉铁/双氧水体系在棉织物低温催化漂白中的应用[J]. 纺织学报, 2018, 39(06): 75-80.
[9] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[10] 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
[11] 黄益 王权威 孟一丁 聂春玲 周岚 邵建中. 苎麻织物的柠檬酸/多元醇抗皱整理[J]. 纺织学报, 2017, 38(05): 104-109.
[12] 向中林 韩雪梅 刘增祥 许长海. 棉织物低温酶氧一浴前处理工艺[J]. 纺织学报, 2017, 38(05): 80-85.
[13] 王宗乾 杨海伟 汤立洋 解项东. 漂白羊毛的防紫外线整理及其耐光稳定性能[J]. 纺织学报, 2017, 38(03): 99-107.
[14] 黄张秘 周翔 邢志奇 张文龙. 棉织物的聚羧酸无甲醛免烫整理[J]. 纺织学报, 2017, 38(01): 94-99.
[15] 郭营 丁若垚 郁崇文. 亚麻原麻及其粗纱生物酶处理工艺条件的优化[J]. 纺织学报, 2016, 37(4): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!