纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 15-19.doi: 10.13475/j.fzxb.20190502306

• 纤维材料 • 上一篇    下一篇

聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能

孙范忱1, 郭静1,2, 于跃1,2, 张森1,2   

  1. 1.大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2.辽宁省功能纤维及复合材料工程技术中心, 辽宁 大连 116034
  • 收稿日期:2019-05-13 修回日期:2020-02-08 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:孙范忱(1993—),男,硕士。主要研究方向为高分子材料改性与加工。
  • 基金资助:
    国家自然科学基金项目(51773024,51373027);辽宁省科技创新团队项目(LT2017017)

Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers

SUN Fanchen1, GUO Jing1,2, YU Yue1,2, ZHANG Sen1,2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Liaoning Provincial Engineering Research Center of Functional Fiber and Its Composite Materials, Dalian, Liaoning 116034, China
  • Received:2019-05-13 Revised:2020-02-08 Online:2020-05-15 Published:2020-06-02

摘要:

针对聚羟基脂肪酸酯(P(3HB-co-4HB))和海藻酸钠(SA)常规情况下难共溶的问题,以P(3HB-co-4HB)为原料,SA为改性剂,三氯甲烷/水为溶剂,烷基糖苷(APG)为乳化剂,通过共混利用静电纺丝法制备了P(3HB-co-4HB)/SA纳米纤维膜。借助红外光谱仪、差示扫描量热仪、扫描电子显微镜表征P(3HB-co-4HB)/SA静电纺纳米纤维的分子间作用力、热性能和形貌;利用细胞毒性和细胞共培养测试表征了P(3HB-co-4HB)/SA纳米纤维的生物相容性。结果表明:P(3HB-co-4HB)/SA复合材料的玻璃化转变温度发生改变,当添加SA质量分数为6%时,静电纺纳米纤维具有均一的形貌,纳米纤维的平均直径为500 nm,孔隙率为74%,细胞毒性等级为0级,P(3HB-co-4HB)和SA具有良好的生物相容性。

关键词: 聚羟基脂肪酸酯, 海藻酸钠, 纳米纤维, 生物相容性, 静电纺丝

Abstract:

Aiming at the problem that polyhydroxy fatty acid ester (P(3HB-co-4HB)) and sodium alginate (SA) are difficult to co-solve under normal circumstances, a P(3HB-co-4HB)/SA nanofiber membrane were prepared using P(3HB-co-4HB) as raw material, SA as modifier, chloroform/water as solvent, alkyl glycoside as emulsifier. The intermolecular forces, thermal properties and morphology of P(3HB-co-4HB)/SA electrospinning nanofibers were characterized by infrared spectrometer, differential scanning calorimeter, and scanning electron microscope. The biocompatibility of P(3HB-co-4HB)/SA nanofibers was characterized by cytotoxicity test and cell co-culture. The results show that the formation of the P(3HB-co-4HB)/SA composite material caused changes in glass transition temperature. When the mass fraction of SA is 6%, the electrospinning nanofibers have a uniform morphology, and the average diameter of the nanofibers is 500 nm. It demonstrates a porosity of 74% and the grade 0 cytotoxicity, and the P(3HB-co-4HB))and SA has good biocompatibility.

Key words: polyhydroxy fatty acid ester, sodium alginate, nanofiber, biocompatibility, electrospinning

中图分类号: 

  • TB332

图1

实验机制和实验过程"

图2

SA、P(3HB-co-4HB) 和P(3HB-co-4HB)/SA的红外光谱图"

图3

氢键结构示意图"

图4

P(3HB-co-4HB)和P(3HB-co-4HB)/SA的DSC曲线"

图5

不同SA质量分数纤维膜的扫描电镜照片(×5 000)"

表1

不同SA质量分数纤维膜的直径和孔隙率"

SA质量分数/% 平均直径/μm 孔隙率/%
2
4
6
8
10
12
0.47±0.02
0.49±0.02
0.50±0.01
0.52±0.03
0.37±0.11
0.42±0.20
77.0±0.14
75.8±0.09
74.0±0.07
70.5±0.12
89.0±0.23
82.0±0.21

表2

不同SA质量分数纤维膜浸提液的吸光度值"

时间/h 空白样 不同SA质量分数时的吸光度
0% 2% 4% 6% 8% 10% 12%
12
24
36
48
72
96
0.302±0.102
0.412±0.109
0.789±0.193
1.293±0.170
1.621±0.142
2.060±0.175
0.300±0.102
0.403±0.111
0.769±0.122
1.300±0.155
1.600±0.124
2.011±0.155
0.323±0.139
0.436±0.147
0.796±0.183
1.329±0.170
1.659±0.187
2.075±0.037
0.339±0.050
0.439±0.138
1.028±0.114
1.408±0.164
1.768±0.061
2.374±0.166
0.312±0.041
0.439±0.124
0.875±0.138
1.399±0.095
1.768±0.190
2.301±0.108
0.321±0.036
0.476±0.097
0.888±0.199
1.395±0.181
1.649±0.125
2.210±0.187
0.327±0.074
0.429±0.079
0.800±0.145
1.410±0.181
1.764±0.100
2.367±0.160
0.347±0.056
0.450±0.151
0.875±0.136
1.391±0.168
1.835±0.112
2.369±0.109

图6

不同SA质量分数纤维膜的体外细胞培养扫描电镜照片(×500)"

[1] ALBERTI K A, NEUFEID C I, WANG J, et al. In vivo peripheral nerve repair using tendon-derived nerve guidance conduits[J]. ACS Biomaterials Science & Engineering, 2016,2(6):937-945.
pmid: 33429503
[2] QUAST M B, SVIGGUMH P, HANSONA C, et al. Infraclavicular versus axillary nerve catheters: a retrospective comparison of early catheter failure rate[J]. Journal of Clinical Anesthesia, 2018,46:79-83.
[3] CAI L, LU J, SHEEEN V, et al. Lubricated biodegradable polymer networks for regulating nerve cell behavior and fabricating nerve conduits with a compositional gradient[J]. Biomacromolecules, 2012,13(2):358-368.
pmid: 22206477
[4] PANG Y, HONG Q, ZHENG J, et al. Sensory reinnervation of muscle spindles after repair of tibial nerve defects using autogenous vein grafts[J]. Neural Regeneration Research, 2014,9(6):610-615.
pmid: 25206863
[5] PLANT C D, PLANT G W. Viral transduction of schwann cells for peripheral nerve repair[J]. Methods in Molecular Biology, 2018,1739:455-466.
[6] LEONGY H, ASM I, MOHAMEDM M, et al. Acute and repeated dose 28-day oral toxicity of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nanoparticles in Sprague-Dawley rats[J]. Regulatory Toxicology & Pharmacology, 2018,95:280-288.
pmid: 29567329
[7] HUONG K H, ELINA K, AMIRULA A. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by cupriavidusmalaysiensis USMAA1020 utilising substrate with longer carbon chain[J]. International Journal of Biological Macromolecule, 2018,11(1):217-223.
[8] 刘琴, 叶川, 张俊标, 等. 同轴电纺P3HB4HB/聚乙烯醇复合支架的制备及其生物相容性[J]. 中国组织工程研究, 2018,22(2):234-240.
LIU Qin, YE Chuan, ZHANG Junbiao, et al. Preparation and biocompatibility of coaxial electrospun P3HB4HB/polyvinyl alcohol composite scaffold[J]. China Tissue Engineering Research, 2018,22(2):234-240.
[9] LI H, LU X, YANG H, et al. Non-isothermal crystallization of P(3HB-co-4HB)/PLA blends[J]. Journal of Thermal Analysis and Calorimetry, 2015,122(2):817-829.
[10] AO Z, LINGYAN C, YANG L, et al. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering[J]. Carbohydrate Polymers, 2018,199:244-255.
doi: 10.1016/j.carbpol.2018.06.093 pmid: 30143127
[11] RAGUVARAN R, MANUJA B K, CHOPRA M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells[J]. International Journal of Biological Macromolecules, 2017,96:185-191.
doi: 10.1016/j.ijbiomac.2016.12.009 pmid: 27939272
[12] 陈秀琼, 颜慧琼, 张雪琴, 等. 海藻酸钠的疏水改性对其电纺性能的影响[J]. 日用化学工业, 2017(3):28-33.
CHEN Xiuqiong, YAN Huiqiong, ZHANG Xueqin, et al. Effect of hydrophobic modification of sodium alginate on its electrospinning properties[J]. China Surfactant Detergent & Cosmetics, 2017(3):28-33.
[13] TALEBI M, ABBASIZADEH S, KESHTKARA R. Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber[J]. Process Safety and Environmental Protection, 2017,109:340-356.
[14] INAL M, ERDURAN N. Removal of various anionic dyes using sodium alginate/poly(N-vinyl-2-pyrrolidone) blend hydrogel beads[J]. Polymer Bulletin, 2015,72(7):1735-1752.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[8] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[9] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[10] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[11] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[12] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[13] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[15] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!