纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 191-196.doi: 10.13475/j.fzxb.20190504606

• 综合述评 • 上一篇    

化学防护服的研究进展

吕凯敏, 戴宏钦()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215006
  • 收稿日期:2019-05-21 修回日期:2020-02-04 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 戴宏钦
  • 作者简介:吕凯敏(1995—),女,硕士。主要研究方向为化学防护服的舒适性改善。

Research progress of chemical protective clothing

LÜ Kaimin, DAI Hongqin()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2019-05-21 Revised:2020-02-04 Online:2020-05-15 Published:2020-06-02
  • Contact: DAI Hongqin

摘要:

为全面了解化学防护服的各类性能要求,介绍了非织造布、无支撑橡胶或塑料、微孔膜材料、吸附性材料、涂层织物、复合材料等不同材质化学防护服的性能差异,回顾了化学防护服的发展情况;参照各类标准对防化服的要求,总结了化学防护服的设计流程,并系统概述了用于化学防护服性能评价的五级分析系统。通过对比国内外相关标准发现,目前标准中存在着性能检测局限性、标准体系化较低、标准更新速度较慢等不足。针对目前化学防护服存在的问题指出未来研究方向:在今后的研究中应从人、化学防护服、环境3个方面系统强化化学防护服各性能之间的关联性和系统性,提高对化学防护服整体性能的准确判断。

关键词: 化学防护服, 防护材料, 防护性能, 设计流程

Abstract:

In order to understand comprehensively all performance requirements of chemical protective clothing, key factors affecting the performance were discussed. The performance differences of chemical protective clothing made from different materials were reviewed, and the development of chemical protective clothing was described. After looking at the design process of chemical protective clothing, the performance evaluation of chemical protective clothing was discussed using a five-level analysis system. By comparing the relevant standards used in China and abroad, deficiencies in domestic standards were identified, including limitation in performance testing, low systematization, and slow update. The research direction of chemical protective clothing in the future was pointed out from the problems existing in chemical protective clothing at present. Aiming at the problems identified through this review, it is proposed that future research regarding chemical protective clothing should take place concerning human, chemical protective clothing and environment, so as to improve the accurate evaluation of the comprehensive performance of chemical protective clothing.

Key words: chemical protective clothing, protective material, rotective performance, design process

中图分类号: 

  • TS941.73

表1

防化服常用材料"

材料类型 防护性能 优点 缺点
非织造布 干微粒和轻微液体喷雾 成本低,透气性好 防护等级低
无支撑橡
胶或塑料
液体飞溅以及液体、气体渗透 防护等级高 舒适性差
微孔膜
材料
液体飞溅 舒适性好 小分子气体可通过
吸附性
材料
气体和蒸汽的渗透 防护性能较好 成本高,适用范围小
涂层织物 液体飞溅,液体、气体渗透 质量轻,防护性能好 耐久性较差
复合材料 液体飞溅,液体、气体或蒸汽渗透 防护性能好 成本高

图1

防护服性能评价五级分析系统"

表2

国内关于防化服的相关标准"

标准 分类
GB 24539—2009《防护服装 化学防护服通用技术要求》 1-ET:气密性化学防护服-ET
GB 24540—2009《防护服装 酸碱类化学品防护服》 2-ET:非气密性化学防护服-ET
GB/T 23462—2009《防护服装化学物质渗透试验方法》 3a:喷射液密性化学防护服
GB/T 24536—2009《防护服装化学防护服的选择、使用和维护》 3:液密性化学防护服 3a-ET:喷射液密性化学防护服-ET
GB/T 29511—2013《防护服装 固体微粒物化学防护服》 3b:喷溅液密性化学防护服
GA 770—2008《消防员化学防护服装》 4:颗粒物防护服
[1] 潘帅, 唐籍涛. 化学防护服材料及其应用探讨[J]. 化工管理, 2018(12):149.
PAN Shuai, TANG Jitao. Discussion on chemical protective clothing materials and their application[J]. Chemical Management, 2018(12):149.
[2] MANI K, SIVAKKUMAR V. Chemical protective clothing[J]. Man-made Textiles in India, 2011,39(6):5-10.
[3] SANER M. Multi-hazard comes of age protective clothing: Garments address flash fire, arc flash, chemical splash & poor visibility[J]. Industrial Safety & Hygiene News, 2017,51(10):1.
[4] BACH A J E, MALEY M J, MINETT G M, et al. An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing[J]. Frontiers in Physiology, 2019,10:424.
pmid: 31031643
[5] EVANS K M, HARDY J K. Predicting solubility and permeation properties of organic solvents in Viton glove material using Hansen's solubility parameters[J]. Journal of Applied Polymer Science, 2004,93(6):88-98.
[6] SHAW A, PALLEN C, DURAND-RÉVILLE J, et al. Protective clothing for pesticide: development of a database to validate ISO 27065 test chemical[J]. Journal of Consumer Protection and Food Safety, 2018,13(2):103-111.
[7] SHAW, ANUGRAH, ANNA, et al. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials[J]. Industrial Health, 2017,55(6):555-563.
[8] CHEN T, CHEN W, WANG M. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort[J]. Journal of Occupational and Environmental Hygiene, 2014,11(6):36-76.
[9] 何晴芳. 化学防护服的选择—使用—维护[J]. 劳动保护, 2015(3):97-99.
HE Qingfang. Selection, use and maintenance of chemical protective clothing[J]. Labor Protection, 2015(3):97-99.
[10] WANG Tao, WANG Liang, XIE Guanghu, et al. Experimental study on the performance of a liquid cooling garment with the application of MEPCMS[J]. Energy Conversion and Management, 2015,103(43):943-957.
[11] BORG D N, STEWART I B, COSTELLO J T. Can perceptual indices estimate physiological strain across a range of environments and metabolic workloads when wearing explosive ordnancedisposal and chemical protective clothing?[J] Physiology & Behavior, 2015,4(1):71-77.
[12] 王得印, 李小银, 黄强. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22.
WANG Deyin, LI Xiaoyin, HUANG Qiang. Current situation and development trend of isolated skin protection equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22.
[13] GUO Tinghui, SHANG Bofeng. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015,49(4):47-54.
[14] CADARETTE B S, CHEUVRONT S N, KOLKA M A, et al. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing[J]. Ergonomic, 2006,49(2):209.
[15] 李栋. 聚四氟乙烯双向拉伸膜生化隔离防护服的研究[J]. 山东化工, 2015,44(13):53-55,57.
LI Dong. Study on biochemical isolation protective clothing of polytetrafluoroethylene bidirectional tensile film[J]. Shandong Chemical Industry, 2015,44(13):53-55,57.
[16] CUI H, LI Y, ZHAO X, et al. Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application[J]. Composites Communications, 2017,6(12):63-67.
[17] BUI N, MESHOT E R, KIM S, et al. Ultrabreathable and protective membranes with Sub-5nm carbon nanotubepores[J]. Advanced Materials, 2016(28):871.
[18] 马倩, 王可. 化学防护服及新材料应用[J]. 纺织科技进展, 2013(4):10-12.
MA Qian, WANG Ke. Chemical protective clothing and application of new materials[J]. Progress in Textile Science and Technology, 2013(4):10-12.
[19] 朱梦玲, 李素英. 涤纶过滤材料包覆整理及性能研究[J]. 上海纺织科技, 2019,47(3):15-18.
ZHU Mengling, LI Suying. Study on coating finishing and performance of polyester filtration materials[J]. Shanghai Textile Science & Technology, 2019,47(3):15-18.
[20] DUAN X, WANG X, WANG F, et al. Synjournal of acti vated carbon fibers from cotton by microwave induc ed H3PO4 activation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,70(1):374-81.
[21] SINHA M K, DAS B R. Chitosan nanofibrous materials for chemical and biological protection[J]. Journal of Textiles and Fibrous Materials, 2018,1(1):25-37.
[22] NAGESH K, TRIPATHI, VIRENDRA V, et al. Activated carbon fabric: an adsorbent material for chemical protective clothing[J]. Defence Science Journal, 2018,68(1):83-90.
[23] HAVENITH G, DEN HARTOG E, MARTINI S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794
[24] YANG Z, YANG G, YANG B. Determination of permeation resistance of chemical protective clothing to dimethyl sulfate by solution collection-gas chromatographic Method[J]. Chinese Journal of Analytical Chemistry, 2015,43(6):924-928.
[25] XU K, FENG J. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plasticcomposites[J]. International Biodeterioration & Biodegradation, 2015,100(3):106.
[26] 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31,45.
TIAN Tao, DUAN Huili, WU Jinhui. Research status and development countermeasure of biochemical protective clothing at home and abroad[J]. Medical and health equipment, 2008(7):29-31,45.
[27] 李俊, 管文静, 韦鸿发. 功能防护服装的性能评价及其应用与发展[J]. 中国个体防护装备, 2005(6):22-25.
LI Jun, GUAN Wenjing, WEI Hongfa. Performance evaluation and its application and development of functional protective clothing[J]. China Personal Protective Equipment, 2005 (6):22-25.
[28] 张兰, 王灵杰, 崔灵燕. 国内外透气式防毒服发展概述[J]. 山东纺织科技, 2019,60(6):54-56.
ZHANG Lan, WANG Lingjie, CUI Lingyan. Overview of development of ventilated antivirus clothing at home and abroad[J]. Shandong Textile Science Technology, 2019,60(6):54-56.
[29] 杨小兵. 化学防护服国际标准最新动态对我国GB 24539-2009修订的影响[J]. 纺织学报, 2019,40(6):165-170.
YANG Xiaobing. The influence of the latest development of international standards for chemical protective clothing on the revision of GB 24539-2009 in China[J]. Journal of Textile Research, 2019,40(6):165-170.
[30] 袁凤. 出汗暖体假人:新的NIOSH测试工具[J]. 中国个体防护装备, 2013(3):50.
YUAN Feng. Sweating and warm body dummy:new NIOSH test tool[J]. China Personal Protective Equipment, 2013(3):50.
[31] GEORGE Havenith, RONALD Heus. A test battery Related to ergonomics of protelctive clothing[J]. Applied Ergonomics, 2004(35):3-20.
[32] GU J, GU H, CAO J, et al. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application[J]. Applied Surface Science, 2018,439:589-597.
[33] TAO Wang, LIANG Wang, LI Zhanbai, et al. Experimental study on the performance of a liquid cooling garment withthe application of MEPCMS[J]. Energy Conversion and Management, 2015,100:943-957.
[34] SLABOTINSK J, BERNATÍKOVÁ Š. Reaction of the female body to stress in a chemical protective clothing[J]. Safety Engineering Series, 2016,11(2):15-21.
[35] JOSEPH J, SARGENT J R. Characterization ofaselectively permable coating to a woven fab ric[J]. Abstracts International, 2011(5):65-87.
[36] GORJI M, KARIMI M, RAHIMI LARKI M, et al. Theoretical modeling of thermal stress imposed by selective permeation membranes reinforced with graphene oxide[J]. Journal of Applied Polymer Science. 2017,134(17):44-52.
[37] HAVENITH G, DEN Hartog E, Martini S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794
[38] HANEEN Hamdan, NESREEN Ghaddar, DJAMEL Ouahrani, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016,102:154-167.
[39] ERIC VAN WELY. Current global standards for chemical protective clothing: how to choose the right protection for the right job?[J]. Industrial Health 2017,55:485-499.
doi: 10.2486/indhealth.2017-0124 pmid: 29046493
[1] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[2] 张婷婷, 张杰, 田新宇, 陈祯, 任玮. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12): 174-181.
[3] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[4] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[5] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[6] 王雅娴, 李艳梅. 吸能缓冲防护服装的研究进展[J]. 纺织学报, 2020, 41(05): 184-190.
[7] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[8] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[9] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[10] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[11] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[12] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[13] 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146.
[14] 刘其霞, 周逸如, 杨智联, 王梅, 季涛. 透气式球形活性炭化学防护服复合面料的制备及其性能[J]. 纺织学报, 2019, 40(06): 182-188.
[15] 杨小兵, 杨光, 谭雯莉, 郭婧雯, 丁松涛, 钟近艺. 化学防护服国际标准最新动态对我国GB 24539—2009修订的影响[J]. 纺织学报, 2019, 40(06): 165-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!