纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 191-196.doi: 10.13475/j.fzxb.20190504606
• 综合述评 • 上一篇
摘要:
为全面了解化学防护服的各类性能要求,介绍了非织造布、无支撑橡胶或塑料、微孔膜材料、吸附性材料、涂层织物、复合材料等不同材质化学防护服的性能差异,回顾了化学防护服的发展情况;参照各类标准对防化服的要求,总结了化学防护服的设计流程,并系统概述了用于化学防护服性能评价的五级分析系统。通过对比国内外相关标准发现,目前标准中存在着性能检测局限性、标准体系化较低、标准更新速度较慢等不足。针对目前化学防护服存在的问题指出未来研究方向:在今后的研究中应从人、化学防护服、环境3个方面系统强化化学防护服各性能之间的关联性和系统性,提高对化学防护服整体性能的准确判断。
中图分类号:
[1] | 潘帅, 唐籍涛. 化学防护服材料及其应用探讨[J]. 化工管理, 2018(12):149. |
PAN Shuai, TANG Jitao. Discussion on chemical protective clothing materials and their application[J]. Chemical Management, 2018(12):149. | |
[2] | MANI K, SIVAKKUMAR V. Chemical protective clothing[J]. Man-made Textiles in India, 2011,39(6):5-10. |
[3] | SANER M. Multi-hazard comes of age protective clothing: Garments address flash fire, arc flash, chemical splash & poor visibility[J]. Industrial Safety & Hygiene News, 2017,51(10):1. |
[4] |
BACH A J E, MALEY M J, MINETT G M, et al. An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing[J]. Frontiers in Physiology, 2019,10:424.
pmid: 31031643 |
[5] | EVANS K M, HARDY J K. Predicting solubility and permeation properties of organic solvents in Viton glove material using Hansen's solubility parameters[J]. Journal of Applied Polymer Science, 2004,93(6):88-98. |
[6] | SHAW A, PALLEN C, DURAND-RÉVILLE J, et al. Protective clothing for pesticide: development of a database to validate ISO 27065 test chemical[J]. Journal of Consumer Protection and Food Safety, 2018,13(2):103-111. |
[7] | SHAW, ANUGRAH, ANNA, et al. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials[J]. Industrial Health, 2017,55(6):555-563. |
[8] | CHEN T, CHEN W, WANG M. The effect of air permeability and water vapor permeability of cleanroom clothing on physiological responses and wear comfort[J]. Journal of Occupational and Environmental Hygiene, 2014,11(6):36-76. |
[9] | 何晴芳. 化学防护服的选择—使用—维护[J]. 劳动保护, 2015(3):97-99. |
HE Qingfang. Selection, use and maintenance of chemical protective clothing[J]. Labor Protection, 2015(3):97-99. | |
[10] | WANG Tao, WANG Liang, XIE Guanghu, et al. Experimental study on the performance of a liquid cooling garment with the application of MEPCMS[J]. Energy Conversion and Management, 2015,103(43):943-957. |
[11] | BORG D N, STEWART I B, COSTELLO J T. Can perceptual indices estimate physiological strain across a range of environments and metabolic workloads when wearing explosive ordnancedisposal and chemical protective clothing?[J] Physiology & Behavior, 2015,4(1):71-77. |
[12] | 王得印, 李小银, 黄强. 国内外隔绝式皮肤防护装备的现状及发展趋势[J]. 中国个体防护装备, 2015(6):17-22. |
WANG Deyin, LI Xiaoyin, HUANG Qiang. Current situation and development trend of isolated skin protection equipment at home and abroad[J]. China Personal Protective Equipment, 2015(6):17-22. | |
[13] | GUO Tinghui, SHANG Bofeng. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015,49(4):47-54. |
[14] | CADARETTE B S, CHEUVRONT S N, KOLKA M A, et al. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing[J]. Ergonomic, 2006,49(2):209. |
[15] | 李栋. 聚四氟乙烯双向拉伸膜生化隔离防护服的研究[J]. 山东化工, 2015,44(13):53-55,57. |
LI Dong. Study on biochemical isolation protective clothing of polytetrafluoroethylene bidirectional tensile film[J]. Shandong Chemical Industry, 2015,44(13):53-55,57. | |
[16] | CUI H, LI Y, ZHAO X, et al. Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application[J]. Composites Communications, 2017,6(12):63-67. |
[17] | BUI N, MESHOT E R, KIM S, et al. Ultrabreathable and protective membranes with Sub-5nm carbon nanotubepores[J]. Advanced Materials, 2016(28):871. |
[18] | 马倩, 王可. 化学防护服及新材料应用[J]. 纺织科技进展, 2013(4):10-12. |
MA Qian, WANG Ke. Chemical protective clothing and application of new materials[J]. Progress in Textile Science and Technology, 2013(4):10-12. | |
[19] | 朱梦玲, 李素英. 涤纶过滤材料包覆整理及性能研究[J]. 上海纺织科技, 2019,47(3):15-18. |
ZHU Mengling, LI Suying. Study on coating finishing and performance of polyester filtration materials[J]. Shanghai Textile Science & Technology, 2019,47(3):15-18. | |
[20] | DUAN X, WANG X, WANG F, et al. Synjournal of acti vated carbon fibers from cotton by microwave induc ed H3PO4 activation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,70(1):374-81. |
[21] | SINHA M K, DAS B R. Chitosan nanofibrous materials for chemical and biological protection[J]. Journal of Textiles and Fibrous Materials, 2018,1(1):25-37. |
[22] | NAGESH K, TRIPATHI, VIRENDRA V, et al. Activated carbon fabric: an adsorbent material for chemical protective clothing[J]. Defence Science Journal, 2018,68(1):83-90. |
[23] |
HAVENITH G, DEN HARTOG E, MARTINI S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794 |
[24] | YANG Z, YANG G, YANG B. Determination of permeation resistance of chemical protective clothing to dimethyl sulfate by solution collection-gas chromatographic Method[J]. Chinese Journal of Analytical Chemistry, 2015,43(6):924-928. |
[25] | XU K, FENG J. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plasticcomposites[J]. International Biodeterioration & Biodegradation, 2015,100(3):106. |
[26] | 田涛, 段惠莉, 吴金辉, 等. 国内外生化防护服的研究现状与发展对策[J]. 医疗卫生装备, 2008(7):29-31,45. |
TIAN Tao, DUAN Huili, WU Jinhui. Research status and development countermeasure of biochemical protective clothing at home and abroad[J]. Medical and health equipment, 2008(7):29-31,45. | |
[27] | 李俊, 管文静, 韦鸿发. 功能防护服装的性能评价及其应用与发展[J]. 中国个体防护装备, 2005(6):22-25. |
LI Jun, GUAN Wenjing, WEI Hongfa. Performance evaluation and its application and development of functional protective clothing[J]. China Personal Protective Equipment, 2005 (6):22-25. | |
[28] | 张兰, 王灵杰, 崔灵燕. 国内外透气式防毒服发展概述[J]. 山东纺织科技, 2019,60(6):54-56. |
ZHANG Lan, WANG Lingjie, CUI Lingyan. Overview of development of ventilated antivirus clothing at home and abroad[J]. Shandong Textile Science Technology, 2019,60(6):54-56. | |
[29] | 杨小兵. 化学防护服国际标准最新动态对我国GB 24539-2009修订的影响[J]. 纺织学报, 2019,40(6):165-170. |
YANG Xiaobing. The influence of the latest development of international standards for chemical protective clothing on the revision of GB 24539-2009 in China[J]. Journal of Textile Research, 2019,40(6):165-170. | |
[30] | 袁凤. 出汗暖体假人:新的NIOSH测试工具[J]. 中国个体防护装备, 2013(3):50. |
YUAN Feng. Sweating and warm body dummy:new NIOSH test tool[J]. China Personal Protective Equipment, 2013(3):50. | |
[31] | GEORGE Havenith, RONALD Heus. A test battery Related to ergonomics of protelctive clothing[J]. Applied Ergonomics, 2004(35):3-20. |
[32] | GU J, GU H, CAO J, et al. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application[J]. Applied Surface Science, 2018,439:589-597. |
[33] | TAO Wang, LIANG Wang, LI Zhanbai, et al. Experimental study on the performance of a liquid cooling garment withthe application of MEPCMS[J]. Energy Conversion and Management, 2015,100:943-957. |
[34] | SLABOTINSK J, BERNATÍKOVÁ Š. Reaction of the female body to stress in a chemical protective clothing[J]. Safety Engineering Series, 2016,11(2):15-21. |
[35] | JOSEPH J, SARGENT J R. Characterization ofaselectively permable coating to a woven fab ric[J]. Abstracts International, 2011(5):65-87. |
[36] | GORJI M, KARIMI M, RAHIMI LARKI M, et al. Theoretical modeling of thermal stress imposed by selective permeation membranes reinforced with graphene oxide[J]. Journal of Applied Polymer Science. 2017,134(17):44-52. |
[37] |
HAVENITH G, DEN Hartog E, Martini S. Heat stress in chemical protective clothing: porosity and vapour resistance[J]. Ergonomics, 2011,54(5):497-507.
doi: 10.1080/00140139.2011.558638 pmid: 21547794 |
[38] | HANEEN Hamdan, NESREEN Ghaddar, DJAMEL Ouahrani, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016,102:154-167. |
[39] |
ERIC VAN WELY. Current global standards for chemical protective clothing: how to choose the right protection for the right job?[J]. Industrial Health 2017,55:485-499.
doi: 10.2486/indhealth.2017-0124 pmid: 29046493 |
[1] | 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58. |
[2] | 张婷婷, 张杰, 田新宇, 陈祯, 任玮. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12): 174-181. |
[3] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[4] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
[5] | 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117. |
[6] | 王雅娴, 李艳梅. 吸能缓冲防护服装的研究进展[J]. 纺织学报, 2020, 41(05): 184-190. |
[7] | 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122. |
[8] | 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90. |
[9] | 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112. |
[10] | 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123. |
[11] | 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113. |
[12] | 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144. |
[13] | 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146. |
[14] | 刘其霞, 周逸如, 杨智联, 王梅, 季涛. 透气式球形活性炭化学防护服复合面料的制备及其性能[J]. 纺织学报, 2019, 40(06): 182-188. |
[15] | 杨小兵, 杨光, 谭雯莉, 郭婧雯, 丁松涛, 钟近艺. 化学防护服国际标准最新动态对我国GB 24539—2009修订的影响[J]. 纺织学报, 2019, 40(06): 165-170. |
|