纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 8-13.doi: 10.13475/j.fzxb.20190600506
王树博1,2, 秦湘普3, 石磊3, 庄旭品3(), 李振环1,2
WANG Shubo1,2, QIN Xiangpu3, SHI Lei3, ZHUANG Xupin3(), LI Zhenhuan1,2
摘要:
为提高全氟磺酸(Nafion)膜的质子传导率和尺寸稳定性,利用静电纺丝技术制备了氧化石墨烯量子点(GOQDs)/聚丙烯腈(PAN)纳米纤维膜,并通过Nafion溶液浸渍法制备了纳米纤维复合质子交换膜。借助扫描电子显微镜、共聚焦显微镜、热重分析仪和X射线衍射仪等对纳米纤维及复合膜的结构和性能进行表征。结果表明:GOQDs在PAN纳米纤维中均匀分布,GOQDs的加入减小了纳米纤维的直径;纳米纤维形成三维网络结构,对复合膜起到了骨架支撑作用,提高了复合膜的尺寸稳定性,同时提高了复合膜的热稳定性和吸水性;GOQDs质量分数的增加提高了复合膜的质子传导率,80 ℃时复合膜的质子传导率最高可达0.182 S/cm。
中图分类号:
[1] |
HAN R, WU P. Composite proton-exchange membrane with highly improved proton conductivity prepared by in situ crystallization of porous organic cage[J]. ACS Applied Materials & Interfaces, 2018,10(21):18351-18358.
pmid: 29745640 |
[2] | BAKANGURA E, WU L, GE L, et al. Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives[J]. Progress in Polymer Science, 2016,57:103-152. |
[3] | PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010,35(17):9349-9384. |
[4] | ALBERTI G, NARDUCCI R, SGANAPPA M. Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix[J]. Journal of Power Sources, 2008,178(2):575-583. |
[5] |
ZHANG H, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012,112(5):2780-2832.
pmid: 22339373 |
[6] | LUO W, ZHAO L. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from tetraethoxysilane, 3-glycidyloxypropyltrimethoxysilane, trimethyl phosphate and diethylethylammonium trifluoromethanesulfonate[J]. Journal of Membrane Science, 2014,451:32-39. |
[7] | LI J, WANG S, XU J, et al. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2017,529:243-251. |
[8] | SHEN C, GUO Z, CHEN C, et al. Preparation of inorganic-organic hybrid proton exchange membrane with chemically bound hydroxyethane diphosphonic acid[J]. Journal of Applied Polymer Science, 2012,126(3):954-959. |
[9] | LEE C, JO S M, CHOI J, et al. SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells[J]. Journal of Materials Science, 2013,48(10):3665-3671. |
[10] | DIVONA M, AHMED Z, BELLITTO S, et al. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process[J]. Journal of Membrane Science, 2007,296(1/2):156-161. |
[11] | JIANG Z, ZHAO X, MANTHIRAM A. Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2013,38(14):5875-5884. |
[12] | TSENG C, YE Y, CHENG M, et al. Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties[J]. Advanced Energy Materials, 2011,1(6):1220-1224. |
[13] | HE Y, TONG C, GENG L, et al. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: size effect of graphene oxide[J]. Journal of Membrane Science, 2014,458:36-46. |
[14] |
KONG B, ZHU A, DING C, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012,24(43):5844-5848.
pmid: 22933395 |
[15] | WU W, LI Y, LIU J, et al. Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction[J]. Advanced Materials, 2018,30(16):1707516. |
[16] |
CAO L, MEZIANI M J, SAHU S, et al. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts of Chemical Research, 2012,46(1):171-180.
pmid: 23092181 |
[17] | XU X, LI R, TANG C, et al. Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells[J]. Carbohydrate Polymers, 2018,184:299-306. |
[18] | HASANI-SADRABADI M M, SHABANI I, SOLEIMANI M, et al. Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications[J]. Journal of Power Sources, 2011,196(10):4599-4603. |
[19] |
YAO Y, JI L, LIN Z, et al. Sulfonated polystyrene fiber network-induced hybrid proton exchange mem-branes[J]. ACS Applied Materials & Interfaces, 2011,3(9):3732-3737.
doi: 10.1021/am2009184 pmid: 21838242 |
[20] | ESCORIHUELA J, GARCÍA-BERNABÉ A, MONTERO A, et al. Proton conductivity through polybenzimidazole composite membranes containing silica nanofiber mats[J]. Polymers, 2019,11(7):1182. |
[21] | CAI Z, LI R, XU X, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane[J]. Polymer, 2018,156:179-185. |
[22] | GAO Q J, WANG Y X, XU L, et al. Proton-exchange sulfonated poly(ether ether ketone)/sulfonated phenolphthalein poly(ether sulfone) blend membranes in DMFCs[J]. Chinese Journal of Chemical Engineering, 2009,17(6):934-941. |
[23] | YANG H N, LEE W H, CHOI B S, et al. Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell[J]. Journal of Membrane Science. 2016,504:20-28. |
[24] | GENIES C, MERCIER R, SILLION B, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J]. Polymer, 2001,42(2):359-373. |
[25] | JIN J, HAO R, HE X, et al. Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015,40(41):14421-14427. |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[11] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[12] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[13] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[14] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
[15] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
|