纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 66-71.doi: 10.13475/j.fzxb.20190601606

• 纺织工程 • 上一篇    下一篇

洗后织物外观视觉特征编码与折皱评级

徐平华1,2(), 冒海琳3, 沈红影4, 丁雪梅4   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.江苏依海服饰有限公司, 江苏 南通 226007
    4.东华大学 服装与艺术设计学院, 上海 200051
  • 收稿日期:2019-06-10 修回日期:2020-01-22 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:徐平华(1984—),男,副教授,博士。主要研究方向为纺织品服装数字化检测。E-mail: shutexph@163.com
  • 基金资助:
    国家自然科学基金项目(61702460);浙江省服装工程技术研究中心开放基金项目(2018FZKF11);服装设计国家级虚拟仿真实验教学中心项目(zx2019004);浙江理工大学一流学科优秀博士专项(2017YBZX15);浙江理工大学科研启动基金项目(17072067-Y)

Visual feature coding and wrinkle assessment of repeatedly laundered fabrics

XU Pinghua1,2(), MAO Hailin3, SHEN Hongying4, DING Xuemei4   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Jiangsu Yihai Clothing Co., Ltd., Nantong, Jiangsu 226007, China
    4. College of Fashion and Design,Donghua University, Shanghai 200051, China
  • Received:2019-06-10 Revised:2020-01-22 Online:2020-05-15 Published:2020-06-02

摘要:

为提高洗后织物外观平整度主客观评级的一致率,提出了基于视觉特征编码与多分类支持向量机相结合的织物折皱自动评级方法。首先,将6块立体标准样板扩充至450幅具有代表性的织物洗后折皱图像作为训练集;其次,模拟人眼视觉聚焦机制,利用稀疏编码技术,分别解析9个半级图像子库的多尺度编码特征,并构建形成各级特征向量链码;最后,利用线性多分类支持向量机算法评定其余200幅测试样本。实验结果表明:该方法主客观一致率为95.1%,评级精度为0.1级,单样本评级速度小于6 s,能够满足当前织物整理剂、洗涤剂、洗护设备等护理效果的商用评级用途。

关键词: 平整度, 视觉特征, 稀疏编码, 主客观一致率, 织物外观

Abstract:

In order to improve the consistency between subjective and objective ratings for the repeatedly laundered fabrics, an automatic method of wrinkling assessment based on visual feature coding and multi-classification support vector machine (SVM) was proposed. 450 representative wrinkled fabric images including 6 standard samples were selected as the training set. In addition, the human visual focusing mechanism was simulated, and the sparse coding method was utilized to extract the feature vector chain codes from 9 half-level image sub-databases. 200 wrinkled images as testing samples in this experiment were classified by linear multi-classification SVM. Results show that consistency between subjective and objective rating reaches 95.1%, rating precision is 0.1 and rating speed for single sample is less than 6 seconds, which meet the current commercial rating requirement for effective evaluations of fabric finishing, detergent products and care equipment.

Key words: smoothness appearance, visual feature, sparse coding, subjective and objective rating, fabric appearance

中图分类号: 

  • TS107.4

图1

织物图像采集箱体"

图2

部分织物试样图像"

图3

D-SIFT特征提取实现路径 注:m表示原图像尺寸;t表示图像移动的距离。"

图4

视觉特征编码词汇"

图5

主客观评价一致率验证结果"

[1] 徐志凤, 范伟超, 刘尊峰, 等. 滚筒洗涤中护理剂对织物洗后性能的影响研究[J]. 中国洗涤用品工业, 2018 (4):34-40.
XU Zhifeng, FAN Weichao, LIU Zunfeng, et al. The influence of fabric softener on textile properties using a domestic front-loading washer[J]. China Cleaning Industry, 2018(4):34-40.
[2] YU X C, FAN W C, WEI Y H, et al. The wrinkling mechanism of woven cotton fabrics during domestic tumble drying[J]. Drying Technology, 2017,36(6):1-9.
[3] SHIN EH, SEO M H, JEON B S, et al. Wrinkle components analysis using AATCC smoothness appearance replica[J]. Textile Science & Engineering, 2012,49(1):26-34.
[4] 袁建荣, 李兆君, 吴雄英, 等. 家庭滚筒洗衣机洗涤温度对机织物外观平整性的影响[J]. 纺织学报, 2014,35(7):74-78.
YUAN Jianrong, LI Zhaojun, WU Xiongying, et al. Effect of washing temperature on smoothness appearance of woven fabrics during domestic tumble laundering[J]. Journal of Textile Research, 2014,35(7):74-78.
[5] 徐平华, 丁雪梅, 王荣武, 等. 洗后织物外观平整度客观评级中的若干问题[J]. 纺织学报, 2014,35(12):159-164.
XU Pinghua, DING Xuemei, WANG Rongwu, et al. Exploration of several issues about evaluation of fabric smoothness appearance after laundering[J]. Journal of Textile Research, 2014,35(12):159-164.
[6] YU W R, XU B G. A sub-pixel stereo matching algorithm and its applications in fabric imaging[J]. Machine Vision and Applications, 2009,20(4):261-270.
[7] LIU C X. New method of fabric wrinkle measurement based on image processing[J]. Fibers & Textiles in Eastern Europe, 2014,103(1):51-55.
[8] YAMAZAKI K, INABA M. Image-based classification of everyday clothing based on cloth-overlaps, wrinkles, and fabrics[J]. Transactions of the Society of Instrument & Control Engineers, 2013,49(7):661-669.
[9] JAVUER S B, JOAQUIN B S, RUBEN P L, et al. Garment smoothness appearance evaluation through computer vision[J]. Textile Research Journal, 2012,82(3):299-309.
[10] SUN J J, YAO M, XU B G, et al. Fabric wrinkle characterization and classification using modified wavelet coefficients and support-vector-machine classifiers[J]. Textile Research Journal, 2011,81(9):902-913.
[11] XIN B J, LI Y M, QIU J X. Texture modelling of fabric appearance evaluation based on image analysis[J]. Fibres & Textiles in Eastern Europe, 2012,91(2):48-52.
[12] XU P H, DING X M, WANG R W, et al. Feature-based 3D reconstruction of fabric by binocular stereo-vision[J]. Journal of The Textile Institute, 2016,107(1):12-22.
[13] GEOFFREY E H, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507.
pmid: 16873662
[14] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
[15] KARAKASIS E G, AMABATIADIS A, GASTERATOS A, et al. Image moment invariants as local features for content based image retrieval using the Bag-of-Visual-Words model[J]. Pattern Recognition Letters, 2015,55:22-27.
doi: 10.1016/j.patrec.2015.01.005
[16] WANG J, YANG J, KAI Y, et al. Locality-constrained linear coding for image classification [C]//23th IEEE conference on computer vision and pattern recognition. San Francisco: Computer Vision and Pattern Recognition Ltd, 2010: 3360-3367.
[17] 刘国军, 高丽霞, 陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程, 2017,25(3):742-748.
LIU Guojun, GAO Lixia, CHEN Liqi. Pooling strategy for full-reference IQA via general means[J]. Optics and Precision Engineering, 2017,25(3):742-748.
doi: 10.3788/OPE.
[1] 肖平, 钱伯丹, 鲁虹, 张向辉, 张媛. 服装缝纫平整度的研究进展[J]. 纺织学报, 2019, 40(11): 182-188.
[2] 石康君, 王静安, 高卫东. 基于傅里叶频谱特征的织物平整度客观评级[J]. 纺织学报, 2019, 40(11): 50-56.
[3] 陈丽丽. 精纺毛织物缝纫平整度客观评价方法[J]. 纺织学报, 2018, 39(03): 120-125.
[4] 张宁 潘如如 高卫东. 采用图像处理的织物缝纫平整度自动评估[J]. 纺织学报, 2017, 38(04): 145-150.
[5] 郁兰. 经起花织物花型变化设计与开发[J]. 纺织学报, 2015, 36(11): 39-44.
[6] 袁建荣 李兆君 吴雄英 丁雪梅. 家庭滚筒洗衣机洗涤温度对机织物外观平整性的影响[J]. 纺织学报, 2014, 35(7): 74-0.
[7] 李艳梅;张渭源. 小波分析在织物缝纫平整度客观评价中的应用[J]. 纺织学报, 2009, 30(10): 115-119.
[8] 陈慧敏;顾洪波;张渭源. 基于点模型的织物平整性能分析[J]. 纺织学报, 2008, 29(9): 38-42.
[9] 潘永惠;包芳;王士同. 基于改进RBF网络的缝纫平整度模糊辩识系统[J]. 纺织学报, 2008, 29(3): 76-79.
[10] 倪红. 毛精纺面料的缝纫平整度与缝纫条件的关系[J]. 纺织学报, 2008, 29(3): 80-82.
[11] 陈慧敏;张渭源;单张敬;杨明. 基于LabVIEW的织物平整度等级客观评定系统[J]. 纺织学报, 2006, 27(10): 46-49.
[12] 杨晓波. 基于模糊模式识别的织物平整度等级评定[J]. 纺织学报, 2005, 26(6): 15-18.
[13] 张瑞云;黄新林;李汝勤. 机织物的计算机三维模拟[J]. 纺织学报, 2005, 26(1): 62-63.
[14] 华涛;陶肖明;郑国宝;黄家祺;徐宾刚. 机织用扭妥TM纱的应用研究[J]. 纺织学报, 2004, 25(05): 38-39.
[15] 施国生;梁道雷. 纱线和织物外观模拟图形的统计特性研究[J]. 纺织学报, 2004, 25(02): 39-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!