纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 142-148.doi: 10.13475/j.fzxb.20190604207

• 服装工程 • 上一篇    下一篇

基于改进YOLO深度卷积神经网络的缝纫手势检测

王晓华(), 姚炜铭, 王文杰, 张蕾, 李鹏飞   

  1. 西安工程大学 电子信息学院, 陕西 西安 710048
  • 收稿日期:2019-06-18 修回日期:2020-01-12 出版日期:2020-04-15 发布日期:2020-04-27
  • 作者简介:王晓华(1972—),女,教授,博士。主要研究方向为智能机器人、模式识别原理及技术研究。E-mail: w_xiaohua@126.com
  • 基金资助:
    国家自然科学基金项目(51607133);教育部工程科技人才培养研究项目(18JDGC029);中国纺织工业联合会科技指导性计划项目(2018098);西安工程大学博士科研启动基金项目(107020384);研究生创新基金项目(chx2019025)

Sewing gesture recognition based on improved YOLO deep convolutional neural network

WANG Xiaohua(), YAO Weiming, WANG Wenjie, ZHANG Lei, LI Pengfei   

  1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2019-06-18 Revised:2020-01-12 Online:2020-04-15 Published:2020-04-27

摘要:

在人机协作领域,针对动作手势相似度大,环境复杂背景下手势识别率低的问题,提出一种基于YOLO深度卷积神经网络检测识别缝纫手势的方法。以4种复杂缝纫手势作为检测对象并构建缝纫手势数据集,通过在YOLOv3低分辨率的深层网络处增加密集连接层,加强图像特征传递与重用提高网络性能,实现端到端的缝纫手势检测。实验结果表明,在缝纫手势测试集中,训练后的模型平均精度均值为94.45%,交并比为0.87,调和平均值为0.885。通过对比区域卷积神经网络、YOLOv2以及原始YOLOv3算法,提出的改进方法检测精度有显著提升;同时在GPU加速情况下,平均检测速度为43.0帧/s,可完全满足缝纫手势的实时检测。

关键词: 缝纫手势识别, 目标检测, YOLO深度卷积神经网络, 服装缝纫, 人机协作

Abstract:

A method of detecting and recognizing sewing gestures based on YOLO deep convolutional neural network was proposed to solve the problems of similar and less recognizable gestures in complex environments in the field of human-machine cooperation. Four complex sewing gestures were used to detect objects and construct a sewing gesture data set. By adding dense connection layer in the deep network of YOLOv3 low resolution, image feature transmission and reuse were enhanced, network performance was improved, and end-to-end sewing gesture was realized. The experimental results show that the trained model mean average precision is 94.45%, the intersection ratio is 0.87, and the harmonic mean is 0.885. By comparing region-convolutional neural networks, YOLOv2 and the original YOLOv3 algorithm, the detection accuracy of the improved method is significantly improved. At the same time, in the case of GPU acceleration, the average detection speed is 43.0 frames/s, and this fully satisfies the real-time detection of sewing gestures, and provides an algorithm basis for recognizing sewing gestures in complex environments.

Key words: sewing gesture recognition, target detection, YOLO deep convolutional neural network, garment sewing, human-machine cooperation

中图分类号: 

  • TP242.2

图1

YOLO检测过程"

图2

YOLO改进的网络结构"

表1

数据增强方法生成的图像数量"

手势类别 编号 原始图
像个数
不同预处理方式下图像个数
颜色 亮度 旋转 模糊
内包缝 S1 120 120 1 100 160 100
卷边缝 S2 120 120 1 160 160 100
裁剪布料 S3 120 120 1 200 160 100
抽褶缝 S4 120 120 1 210 160 100

表2

网络训练参数"

参数名 参数值
批样本大小(batch) 64个
批分割(subdivisions) 8个
迭代(iterations) 5 000次
学习率衰减步长(steps) 4 000次,4 500次
学习率衰减因子(scales) 0.1,0.1
动量(momentum) 0.9
权重衰减(decay) 0.000 5
非极大值阈值(nms) 0.25

图3

模型损失曲线"

图4

平均交并比变化曲线"

图5

平均精度均值随迭代次数的变化"

图6

置信度阈值"

图7

模型P-R曲线"

表3

不同数据量条件下F1实验结果"

数据量 500个 1 000个 2 000个 3 000个 4 000个
F1值 0.27 0.67 0.75 0.83 0.87

表4

不同光照条件下实验结果"

时间 数据集A 数据集B
IOU值 F1值 IOU值 F1值
白天 0.858 0.806 0.874 0.862
傍晚 0.734 0.744 0.762 0.795
灯光 0.693 0.705 0.723 0.768

图8

不同光照条件下4种手势的检测效果 注:图片a1~a4为白天光照环境下;图片b1~b4为傍晚环境下;图片c1~c4为灯光环境下。"

表5

不同算法对比实验结果"

检测算法 mAP值/
%
IOU值 F1值 检测速度/
(帧·s-1)
R-CNN 92.56 0.85 0.876 0.6
YOLOv2 90.04 0.76 0.865 46.0
YOLOv3 92.16 0.79 0.872 44.0
改进YOLOv3 94.45 0.87 0.885 43.0

图9

不同算法4种手势实验检测效果"

[1] 黄嘉俊, 柯薇, 王静, 等. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019,40(5):163-169.
HUANG Jiajun, KE Wei, WANG Jing, et al. Colorshading detection and rating system for denim based on computer vision[J]. Journal of Textile Research, 2019,40(5):163-169.
[2] 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019,40(5):157-162.
JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision[J]. Journal of Textile Research, 2019,40(5):157-162.
[3] 齐静, 徐坤, 丁希仑. 机器人视觉手势交互技术研究进展[J]. 机器人, 2017,39(4):565-584.
QI Jing, XU Kun, DING Xilun. Vision-based hand gesture recognition for human-robot interaction:a review[J]. Robot, 2017,39(4):565-584.
[4] LIU Hongyi, WANG Lihui. Gesture recognition for human-robot collaboration: a review[J]. International Journal of Industrial Ergonomics, 2017.DOI: 101016/j.ergan.2017.02.004.
pmid: 24443622
[5] ASAARI M S M, SUANDI S A, ROSDI B A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics[J]. Expert Systems with Applications, 2014,41(7):3367-3382.
[6] SANGQI P, MATILAINEN M, SILVEN O. Rotation tolerant hand pose recognition using aggregation of gradient orientations[M] //Lecture notes in computer science. Berlin:Springer, 2016: 257-267.
[7] MOHANTY A, RAMBHATLA S S, SAHAY R R. Deep gesture:static hand gesture recognition using CNN[M] //Advances in Intel-ligent systems and computing. Berlin:Springer, 2017: 449-461.
[8] 孟勃, 刘雪君, 王晓霖. 基于四元数时空卷积神经网络的人体行为识别[J]. 仪器仪表学报, 2017,38(11):2643-2650.
MENG Bo, LIU Xuejun, WANG Xiaolin. Human behavior recognition based on quaternion space-time convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2643-2650.
[9] 吴晓凤, 张江鑫, 徐欣晨. 基于Faster R-CNN的手势识别算法[J]. 计算机辅助设计与图形学学报, 2018,30(3):468-476.
WU Xiaofeng, ZHANG Jiangxin, XU Xinchen. Hand gesture recognition algorithm based on faster R-CNN[J]. Journal of Computer-Aided Design & Computer Graphics, 2018,30(3):468-476.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]//European conference on computer vision. Amsterdam:Springer, 2016: 21-37.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection [C]//Conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 779-788.
[12] REDMON J, FARHADI A. YOLO9000: better, faster,stronger [C]//IEEE conference on computer vision and pattern. Hawaii: IEEE, 2017: 6517-6525.
[13] CHEN H J, WANG Q Q, YANG G W, et al. SSD object detection algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Sci-ence and Technology, 2019,13(5):1049-1061.
[1] 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164.
[2] 徐增波 周胜. 基于尺度-空间极值的织物起球目标检测[J]. 纺织学报, 2013, 34(7): 45-51.
[3] 王东云;刘惠琴;胡洛燕;凌德麟. 基于遗传算法服装缝纫调度技术的研究[J]. 纺织学报, 2003, 24(05): 52-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!