纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 142-148.doi: 10.13475/j.fzxb.20190604207
WANG Xiaohua(), YAO Weiming, WANG Wenjie, ZHANG Lei, LI Pengfei
摘要:
在人机协作领域,针对动作手势相似度大,环境复杂背景下手势识别率低的问题,提出一种基于YOLO深度卷积神经网络检测识别缝纫手势的方法。以4种复杂缝纫手势作为检测对象并构建缝纫手势数据集,通过在YOLOv3低分辨率的深层网络处增加密集连接层,加强图像特征传递与重用提高网络性能,实现端到端的缝纫手势检测。实验结果表明,在缝纫手势测试集中,训练后的模型平均精度均值为94.45%,交并比为0.87,调和平均值为0.885。通过对比区域卷积神经网络、YOLOv2以及原始YOLOv3算法,提出的改进方法检测精度有显著提升;同时在GPU加速情况下,平均检测速度为43.0帧/s,可完全满足缝纫手势的实时检测。
中图分类号:
[1] | 黄嘉俊, 柯薇, 王静, 等. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019,40(5):163-169. |
HUANG Jiajun, KE Wei, WANG Jing, et al. Colorshading detection and rating system for denim based on computer vision[J]. Journal of Textile Research, 2019,40(5):163-169. | |
[2] | 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019,40(5):157-162. |
JING Junfeng, ZHANG Xingxing. Fiber glass bobbin yarn hairiness detection based on machine vision[J]. Journal of Textile Research, 2019,40(5):157-162. | |
[3] | 齐静, 徐坤, 丁希仑. 机器人视觉手势交互技术研究进展[J]. 机器人, 2017,39(4):565-584. |
QI Jing, XU Kun, DING Xilun. Vision-based hand gesture recognition for human-robot interaction:a review[J]. Robot, 2017,39(4):565-584. | |
[4] |
LIU Hongyi, WANG Lihui. Gesture recognition for human-robot collaboration: a review[J]. International Journal of Industrial Ergonomics, 2017.DOI: 101016/j.ergan.2017.02.004.
pmid: 24443622 |
[5] | ASAARI M S M, SUANDI S A, ROSDI B A. Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics[J]. Expert Systems with Applications, 2014,41(7):3367-3382. |
[6] | SANGQI P, MATILAINEN M, SILVEN O. Rotation tolerant hand pose recognition using aggregation of gradient orientations[M] //Lecture notes in computer science. Berlin:Springer, 2016: 257-267. |
[7] | MOHANTY A, RAMBHATLA S S, SAHAY R R. Deep gesture:static hand gesture recognition using CNN[M] //Advances in Intel-ligent systems and computing. Berlin:Springer, 2017: 449-461. |
[8] | 孟勃, 刘雪君, 王晓霖. 基于四元数时空卷积神经网络的人体行为识别[J]. 仪器仪表学报, 2017,38(11):2643-2650. |
MENG Bo, LIU Xuejun, WANG Xiaolin. Human behavior recognition based on quaternion space-time convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2017,38(11):2643-2650. | |
[9] | 吴晓凤, 张江鑫, 徐欣晨. 基于Faster R-CNN的手势识别算法[J]. 计算机辅助设计与图形学学报, 2018,30(3):468-476. |
WU Xiaofeng, ZHANG Jiangxin, XU Xinchen. Hand gesture recognition algorithm based on faster R-CNN[J]. Journal of Computer-Aided Design & Computer Graphics, 2018,30(3):468-476. | |
[10] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]//European conference on computer vision. Amsterdam:Springer, 2016: 21-37. |
[11] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection [C]//Conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 779-788. |
[12] | REDMON J, FARHADI A. YOLO9000: better, faster,stronger [C]//IEEE conference on computer vision and pattern. Hawaii: IEEE, 2017: 6517-6525. |
[13] | CHEN H J, WANG Q Q, YANG G W, et al. SSD object detection algorithm with multi-scale convolution feature fusion[J]. Journal of Frontiers of Computer Sci-ence and Technology, 2019,13(5):1049-1061. |
[1] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[2] | 徐增波 周胜. 基于尺度-空间极值的织物起球目标检测[J]. 纺织学报, 2013, 34(7): 45-51. |
[3] | 王东云;刘惠琴;胡洛燕;凌德麟. 基于遗传算法服装缝纫调度技术的研究[J]. 纺织学报, 2003, 24(05): 52-53. |
|