纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 22-26.doi: 10.13475/j.fzxb.20190604305

• 纤维材料 • 上一篇    下一篇

SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能

张凌云, 钱晓明(), 邹驰, 邹志伟   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2019-06-18 修回日期:2020-05-14 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 钱晓明
  • 作者简介:张凌云(1997—),女,硕士生。主要研究方向为非织造过滤材料。
  • 基金资助:
    国家自然科学基金项目(U1607117);天津市应用基础与前沿技术计划项目(16JCZDJC36400);天津市科技计划项目(17PTSYJC00150);中国工程院“先进基础材料强国战略研究课题”子项目(2018-ZD-03)

Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials

ZHANG Lingyun, QIAN Xiaoming(), ZOU Chi, ZOU Zhiwei   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-06-18 Revised:2020-05-14 Online:2020-08-15 Published:2020-08-21
  • Contact: QIAN Xiaoming

摘要:

为开发综合性能优异的复合保暖非织造材料,以聚酯-聚乙烯(PET-PE)双组分皮芯结构复合纤维为主体,通过热风工艺,采用自然沉降法使SiO2气凝胶粉末粘附于复合纤维表面,制得SiO2气凝胶/聚酯-聚乙烯纤维复合非织造材料。对复合非织造材料表面SiO2气凝胶粉末质量分数、微观结构、保暖性能、压缩回弹性能、拉伸性能、透气性能进行测试与分析。结果表明:SiO2气凝胶粉末与聚酯-聚乙烯复合纤维可有效结合,SiO2气凝胶粉末的加入对纤维网具有一定的支撑作用,提升了复合非织造材料的压缩回弹性能、拉伸性能,同时因增加了纤维间静止空气的含量,使复合非织造材料的保暖性能得到提升。

关键词: SiO2气凝胶, 聚酯-聚乙烯双组分纤维, 热风工艺, 非织造材料, 复合保暖材料

Abstract:

Aiming to develop a composite thermal insulation nonwovens with better comprehensive properties, the polyester-polyethylene fiber with a bicomponent skin/core structure was used as the main composite, the SiO2 aerogel powder was adhesioned on composite fiber surface by natural sedimentation method, the composite nonwoven materials with SiO2 aerogel/polyester-polyethylene fiber were made by hot-blast nonwoven production line. The content of SiO2 aerogel powder, microstructure, thermal insulation, elastic energy of compression, tensile property and permeability of the composite were studied. Results show that the SiO2 aerogel powder and polyester-polyethylene fiber web can be effectively combined, the addition of SiO2 aerogel powder has a certain supporting effect to polyester-polyethylene fiber, which can enhance the compressive elastic energy and tensile properties of the nonwoven composites. Meanwhile, due to the increase of still air between fibers, the thermal insulation performance of the composites is also improved.

Key words: SiO2 aerogel, polyester-polyethylene bicomponent fiber, hot-blast technology, nonwoven material, composite thermal insulation material

中图分类号: 

  • TS176

图1

生产流程"

表1

试样参数设置"

试样
编号
纤维线密
度/tex
纤维网厚
度/mm
纤维网面密度/
(g·m-2)
SiO2粉末质
量分数/%
1# 0.3 5.45 61.3 0
2# 0.3 5.79 62.1 5
3# 0.3 5.42 59.6 10
4# 0.3 5.97 62.4 15
5# 0.3 5.81 60.5 20
6# 0.1 3.77 60.2 0
7# 0.1 3.79 59.3 5
8# 0.1 3.58 60.4 10
9# 0.1 3.07 58.2 15
10# 0.1 3.28 59.8 20

表2

复合保暖材料表面SiO2粉末质量分数"

试样
编号
纤维网质量/g SiO2气凝胶
质量分数/%
热风处理前 热风处理后
1# 3.83 3.83 0.0
2# 3.88 3.96 2.0
3# 3.72 3.87 4.0
4# 3.90 4.14 6.2
5# 3.78 4.09 8.2
6# 3.76 3.76 0.0
7# 3.71 3.78 2.0
8# 3.77 3.93 4.2
9# 3.64 3.88 6.6
10# 3.74 4.06 8.5

图2

SiO2气凝胶/PET-PE复合保暖材料表面的微观结构"

图3

SiO2气凝胶粉末质量分数与克罗值变化曲线"

图4

SiO2气凝胶粉末质量分数与压缩回弹率变化曲线"

图5

SiO2气凝胶粉末质量分数与断裂强力变化曲线"

图6

SiO2气凝胶粉末质量分数与透气率变化曲线"

[1] 伍泓宇, 沈兰萍, 赵钰. 多组分保暖絮片的开发与性能研究[J]. 合成纤维, 2017,46(5):40-44.
WU Hongyu, SHEN Lanping, ZHAO Yu. Development and performance of multi-component thermal flocs[J]. Synthetic Fiber in China, 2017,46(5):40-44.
[2] 沈军, 王珏, 甘礼华, 等. 溶胶-凝胶法制备SiO2气凝胶及其特性研究[J]. 无机材料学报, 1995(1):69-75.
SHEN Jun, WANG Jue, GAN Lihua, et al. Preparation of SiO2 aerogel by sol-gel method and its properties[J]. Journal of Inorganic Materials, 1995(1):69-75.
[3] RAO A V, HARANATH D. Effect of methyltrimethoxysilane as a synjournal component on the hydrophobicity and some physical properties of silica aerogels[J]. Microporous & Mesoporous Materials, 1999,30(2/3):267-273.
[4] 王璐, 丁笑君, 夏馨, 等. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019,40(10):79-84.
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019,40(10):79-84.
[5] MAZRAEH-SHAHI Z T, SHOUSHTARI A M, BAHRAMIAN A R, et al. Synjournal, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite[J]. Fibers and Polymers, 2014,15(10):2154-2159.
doi: 10.1007/s12221-014-2154-z
[6] VENKATARAMAN M, MISHRA R, ARUMUGAM V, et al. Acoustic properties of aerogel embedded nonwoven fabrics[C]// 6th International Conference on Nanomaterials. Liberec: Technical University of Liberec, 2014: 124-130.
[7] VENKATARAMAN M, MISHRA R, JASIKOVA D, et al. Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures[J]. Journal of Industrial Textiles, 2015,45(3):387-404.
doi: 10.1177/1528083714534711
[8] VENKATARAMAN M, MISHRA R, JAKUB W, et al. Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures[J]. Journal of The Textile Institute, 2015,106(7):736-747.
doi: 10.1080/00405000.2014.939808
[9] VENKATARAMAN M, MISHRA R, TOMONORI S, et al. Effect of compressibility on heat transport phenomena in aerogel-treated nonwoven fabrics[J]. Journal of The Textile Institute, 2016,107(9):1150-1158.
[10] VENKATARAMAN M, MISHRA R, SUBRAMANIAM V, et al. Dynamic heat flux measurement for advanced insulation materials[J]. Fibers and Polymers, 2016,17(6):925-931.
doi: 10.1007/s12221-016-5882-4
[11] VENKATARAMAN M, MISHRA R, MILITKY J, et al. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens[J]. Journal of The Textile Institute, 2017,108(8):1442-1453.
[12] XIONG X, YANG T, MISHRA R, et al. Transport properties of aerogel-based nanofibrous nonwoven fabrics[J]. Fibers and Polymers, 2016,17(10):1709-1714.
[13] 王觅堂, 李梅, 柳召刚, 等. 超细粉体的团聚机理和表征及消除[J]. 中国粉体技术, 2008(3):46-51.
WANG Mitang, LI Mei, LIU Zhaogang, et al. Agglomeration mechanism, characterization and elimination of ultrafine powders[J]. China Powder Science and Technology, 2008(3):46-51.
[14] 纪守峰, 李桂春. 超细粉体团聚机理研究进展[J]. 中国矿业, 2006(8):54-56.
JI Shoufeng, LI Guichun. Research progress on agglomeration mechanism of ultrafine powders[J]. China Mining Magazine, 2006(8):54-56.
[1] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[2] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[3] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[4] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[5] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[6] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[7] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[8] 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127.
[9] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
[10] 张恒, 申屠宝卿, 章伟, 张一风, 崔国士. 聚乙二醇/聚丙烯熔喷非织造材料的叶脉仿生结构及其保液性能[J]. 纺织学报, 2019, 40(05): 18-23.
[11] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[12] 张恒 甄琪 钱晓明 刘让同 张一风. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(04): 63-68.
[13] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[14] 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
[15] 魏发云 张伟 邹学书 何洋 张瑜. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017, 38(09): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!