纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 64-71.doi: 10.13475/j.fzxb.20190700708
孙广东1, 黄益1(), 邵建中1, FAN Qinguo2
SUN Guangdong1, HUANG Yi1(), SHAO Jianzhong1, FAN Qinguo2
摘要:
针对再生丝素蛋白水凝胶生物活性、凝胶效率及凝胶强度三者难以兼具的问题,用樟脑醌(CQ)、核黄素磷酸钠(FMN)、曙红Y(EY)及姜黄素4种生物相容的光敏剂,分别与二芳基六氟磷酸碘鎓盐(DPI)构成丝素蛋白水凝胶的高效蓝光交联引发体系。借助紫外分光光度计和光差示扫描量热法研究了4种光引发体系的光谱吸收特性和蓝光引发效率,采用光流变系统研究了光交联丝素蛋白的凝胶化行为。结果表明:CQ/DPI、EY/DPI体系均可作为自由基聚合以及丝素蛋白光交联反应的良好蓝光引发体系,该蓝光引发体系诱导丝素蛋白酪氨酸残基自由基间的偶合反应是丝素蛋白光交联反应的主要机制;以EY/DPI体系引发低浓度丝素蛋白光交联反应可在短时间(10 min)内实现较高强度丝素蛋白水凝胶的制备。
中图分类号:
[1] | 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76. |
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76. | |
[2] | KUNDU S. Silk biomaterials for tissue engineering and regenerative medicine[M]. Cambridge: Woodhead Publishing, 2014: 2-15. |
[3] | SUZUKI S, CHIRILA T V, EDWARDS G A. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomate-rials[J]. Progress in Biomaterials, 2016,5(3/4):193-198. |
[4] | 陈芳芳, 闵思佳, 田莉. 交联丝素凝胶制备条件的分析[J]. 纺织学报, 2006,27(10):1-5. |
CHEN Fangfang, MIN Sijia, TIAN Li. Analysis of preparing conditions of cross-linked fibroin gel[J]. Journal of Textile Research, 2006,27(10):1-5. | |
[5] | CHEN D, YIN Z, WU F, et al. Orientational behaviors of silk fibroin hydrogels[J]. Journal of Applied Polymer Science, 2017.DOI: 10.1002/app.45050. |
[6] | KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016,31:17-32. |
[7] |
BAI S, ZHANG X, LU Q, et al. Reversible hydrogel-solution system of silk with high beta-sheet content[J]. Biomacromolecules, 2014,15(8):3044-3051.
doi: 10.1021/bm500662z pmid: 25056606 |
[8] | MALLEPALLY R R, MARIN M A, MCHUGH M A. CO2-assisted synjournal of silk fibroin hydrogels and aerogels[J]. Acta Biomaterialia, 2014,10(10):4419-4424. |
[9] | KUNDU J, POOLE-WARREN L A, MARTENS P, et al. Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs[J]. Acta Biomaterialia, 2012,8(5):1720-1729. |
[10] | WANG X, KLUGE J, LEISK G G, et al. Sonication-induced gelation of silk fibroin for cell encapsula-tion[J]. Biomaterials, 2008,29(8):1054-1064. |
[11] |
KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004,5(3):786-792.
pmid: 15132662 |
[12] | ELLIOTT W H, BONANI W, MANIGLIO D, et al. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking[J]. ACS Applied Materials & Interfaces, 2015,22(7):12099-12108. |
[13] | TADDEI P, CHIONO V, ANGHILERI A, et al. Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications[J]. Macromolecular Bioscience, 2013,13(11):1492-1510. |
[14] |
BURDICK J, HOLLAND C, KAPLAN D, et al. ACS biomaterials science and engineering, editorial: first anniversary[J]. ACS Biomaterials Science & Engineering, 2016,2(2):141.
doi: 10.1021/acsbiomaterials.5b00560 pmid: 33418628 |
[15] | KURLAND N E, DEY T, WANG C, et al. Silk protein lithography as a route to fabricate sericin microarchitectures[J]. Advanced Materials, 2014,26(26):4431-4437. |
[16] | RYU S, KIM H H, PARK Y H, et al. Dual mode gelation behavior of silk fibroin microgel embedded poly (ethylene glycol) hydrogels[J]. Journal of Materials Chemistry B, 2016(4):4574-4584. |
[17] |
WOLLENSAK G, SPOERL E, SEILER T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking[J]. Journal of Cataract & Refractive Surgery, 2003,29(9):1780-1785.
doi: 10.1016/s0886-3350(03)00407-3 pmid: 14522301 |
[18] | APPLEGATE M B, PARTLOW B P, COBURN J, et al. Silk fibroin: photocrosslinking of silk fibroin using riboflavin for ocular prostheses[J]. Advanced Materials, 2016,28(12):2464-2464. |
[19] | TESHIMA W, NOMURA Y, TANAKA N, et al. ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes[J]. Biomaterials, 2003,24(12):2097-2103. |
[20] | WANG C, WANG L, YI H, et al. Fabrication of reactive pigment composite particles for blue-light curable inkjet printing of textiles[J]. RSC Advances, 2017,57(7):36175-36184. |
[21] | CUI K J, ZHU C Z, ZHANG H, et al. Blue laser diode-initiated photosensitive resins for 3D printing[J]. Journal of Materials Chemistry C, 2017(5):12035-12038. |
[22] | GRASSINO S B, STRUMIA M C, COUVE J, et al. Photoactive films obtained from methacrylo-urethanes tannic acid-based with potential usage as coating materials: analytic and kinetic studies[J]. Progress in Organic Coatings, 1999,37(1/2):39-48. |
[23] | COOK W D, CHEN F. Enhanced photopolymerization of dimethacrylates with ketones, amines, and iodonium salts: the CQ system[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011,49(23):5030-5041. |
[24] | JAKUBIAK J, ALLONAS X, FOUASSIER J P, et al. Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization[J]. Polymer, 2003,44(18):5219-5226. |
[25] |
KOLLER T, SCHUMACHER S, SEILER T. Riboflavin/ultraviolet a crosslinking of the paracentral cornea[J]. Cornea, 2013,32(2):165-168.
pmid: 23187160 |
[26] |
HAN S, LIN C C. Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoini-tiator[J]. Macromolecular Rapid Communications, 2013,34(3):269-273.
doi: 10.1002/marc.201200605 pmid: 23386583 |
No related articles found! |
|