纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 81-87.doi: 10.13475/j.fzxb.20190704007

• 纺织工程 • 上一篇    下一篇

超细纤维合成革基布的制备及其性能

朵永超1, 钱晓明1(), 赵宝宝2, 钱幺3, 邹志伟1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    3.五邑大学 纺织材料与工程学院, 广东 江门 529020
  • 收稿日期:2019-07-15 修回日期:2020-05-27 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 钱晓明
  • 作者简介:朵永超(1992—),男,硕士生。主要研究方向为新型非织造材料制备技术。
  • 基金资助:
    国家自然科学基金项目(U1607117);天津市应用基础与前沿技术计划项目(16JCZDJC36400);天津市科技计划项目(17PTSYJC00150)

Preparation and properties of microfiber synthetic leather base

DUO Yongchao1, QIAN Xiaoming1(), ZHAO Baobao2, QIAN Yao3, ZOU Zhiwei1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. School of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
  • Received:2019-07-15 Revised:2020-05-27 Online:2020-09-15 Published:2020-09-25
  • Contact: QIAN Xiaoming

摘要:

为提高聚酯/聚酰胺6(PET/PA6)中空超细纤维合成革基布的透湿性、柔软性,将聚丙烯腈(PAN)纳米纤维与PET/PA6超细纤维混合,通过水刺固网的方法制备出PAN-PET/PA6微/纳米超细纤维合成革基布并进行碱处理,分析了PAN纳米纤维质量分数对革基布透气性、透湿性、吸湿性、柔软度及力学性能的影响。结果表明:当革基布面密度一定时,随着PAN纳米纤维质量分数的增加,革基布的透湿性、吸湿性、柔软度、撕裂性能提升,而透气性能和断裂强力有所下降;当PAN纳米纤维质量分数为20%时,革基布的透湿率提升了15.19%,吸水量提高了23.53%,柔软度增加了38.17%;经碱处理后,革基布的亲水性有了明显改善,透湿率提升了23.81%,吸水量提高了42.26%,柔软度提高了23.20%。

关键词: 聚酯/聚酰胺6超细纤维, 聚丙烯腈纳米纤维, 水刺, 合成革基布, 纤维改性, 透湿性能

Abstract:

In order to further improve the water-vapor transmission rate and softness of polyester/polyamide 6 (PET/PA6) hollow microfiber synthetic leather base, polyacrylonitrile (PAN) nanofibers were mixed with PET/PA6 microfibers to prepare PAN-PET/PA6 micro/nano microfiber synthetic leather base by hydro-entanglement and alkali treatment. The effects of PAN nanofiber mass fraction on the air permeability, water vapor permeability, moisture absorption, softness and mechanical properties of leather base were analyzed. The results show that the water vapor permeability, moisture absorption, softness and tear strength were improved with the content of PAN nanofibers increase for the same areal density, but the air permeability and breaking strength were decreased. When the content of nanofibers was 20%, the water vapor permeability of the base was increased by 15.19%, the moisture absorption 23.53%, and the softness was increased by 38.17%. After alkali treatment, the hydrophilicity of base was obviously improved. The water vapor permeability was increased by 23.81%, the moisture absorption was increased by 42.26%, and the softness was increased by 23.20%.

Key words: polyester/polyamide 6 microfiber, polyacrylonitrile nanofiber, spunlace, synthetic leather base, fiber modification, moisture permeability

中图分类号: 

  • TS174.8

图1

工艺流程图"

图2

天然皮革和PAN纳米纤维的SEM照片"

图3

不同PAN质量分数PAN-PET/PA6合成革基布截面的扫描电镜照片"

图4

PAN-PET/PA6合成革基布的红外光谱图"

图5

PAN纳米纤维质量分数对PAN-PET/PA6合成革基布透气性能的影响"

图6

碱溶液处理前后PAN-PET/PA6合成革基布水接触角测试结果"

图7

PAN纳米纤维质量分数对PAN-PET/PA6合成革基布透湿和吸湿性的影响"

图8

PAN纳米纤维的质量分数对革基布柔软度的影响"

表1

PAN-PET/PA6合成革基布的力学性能"

试样
编号
断裂强力/N 断裂伸长率/% 撕裂强力/N
碱处理前 碱处理后 碱处理前 碱处理后 碱处理前 碱处理后
M1 162.38 124.80 124.09 91.13 8.52 8.12
M2 153.46 117.15 110.26 84.66 9.62 8.56
M3 145.25 112.71 104.59 80.63 11.79 9.25
M4 137.15 106.67 97.27 78.81 12.99 10.04
M5 122.75 103.78 93.92 69.69 14.34 10.11
[1] 任龙芳, 赵国徽, 强涛涛, 等. 超细纤维合成革仿天然皮革研究进展[J]. 皮革科学与工程, 2012, 22(1):36-40.
REN Longfang, ZHAO Guohui, QIANG Taotao, et al. Advances in the microfiber synthetic materials emulating natural leather[J]. Leather Science and Engineering, 2012, 22(1):36-40.
[2] 宋兵, 钱晓明, 严姣. 超细纤维合成革透湿透气性能的研究进展[J]. 合成纤维工业, 2014, 37(4):50-53.
SONG Bing, QIAN Xiaoming, YAN Jiao. Research progress in water vapor permeability of microfiber synthetic leather[J]. China Synthetic Fiber Industry, 2014, 37(4):50-53.
[3] 马兴元, 王俊君, 易宗俊, 等. 提高超细纤维合成革透水汽性能的研究[J]. 皮革科学与工程, 2007, 17(3):43-46.
MA Xingyuan, WANG Junjun, YI Zongjun, et al. Study on improving the water vapor permeability of hyperfine fibre synthetic leather[J]. Leather Science and Engineering, 2007, 17(3):43-46.
[4] ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of split microfiber synthetic leather[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(2):15-21.
[5] 任龙芳, 王娜, 陈婷, 等. PAMAM-COOH的合成、表征及对超细纤维合成革卫生性能的影响[J]. 功能材料, 2014, 45(13):25-29.
REN Longfang, WANG Na, CHEN Ting, et al. Synjournal and characterization of PAMAM-COOH and its effect on sanitary properties of microfiber synthetic leather[J]. Functional Materials, 2014, 45(13):25-29.
[6] KIUMARSI A, PARVINZADEH M. Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme[J]. Journal of Applied Polymer Science, 2010, 116(6):3140-3147.
[7] QIANG Taotao, WANG Xuechuan, REN Longfang, et al. Study on the improvement of water vapor permeability and moisture absorption of microfiber synthetic leather base by collagen[J]. Textile Research Journal, 2015, 85(13):1394-1403.
doi: 10.1177/0040517514545262
[8] 马兴元, 吕凌云, 李晓. 聚酰胺超细纤维合成革基布的酶法改性研究[J]. 中国皮革, 2010, 39(5):36-39.
MA Xingyuan, LV Lingyun, LI Xiao. Enzyme hydrolyzation of polyamide hyperfine fiber synthetic leather base[J]. China Leather, 2010, 39(5):36-39.
[9] 王学川, 赵佩, 任龙芳, 等. 噁唑烷/胶原蛋白提高超细纤维合成革透水汽性的研究[J]. 中国皮革, 2017(2):87-93.
WANG Xuechuan, ZHAO Pei, REN Longfang, et al. Study on water vapour permeability improvment of superfiber synthetic leather with oxazolidine/collagen[J]. China Leather, 2017(2):87-93.
[10] 陈丽. 环糊精改性聚酰胺纤维的机械和物理化学性能[J]. 现代丝绸科学与技术, 2008, 23(3):9-11.
CHEN Li. Mechanical and physicochemical properties of cyclodextrin modified polyamide fibers[J]. Modern Silk Science and Technology, 2008, 23(3):9-11.
[11] DURANY A, ANANTHARAMAIAH N, POURDEYHIMI B. High surface area nonwovens via fibrillating spunbonded nonwovens comprising islands-in-the-sea bicomponent filaments: structure-process-property relationships[J]. Journal of Materials Science, 2009, 44(21):5926-5934.
doi: 10.1007/s10853-009-3841-9
[12] HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B. Hybrid mixed media nonwovens composed of macrofibers and microfibers: part I: three-layer segmented pie configuration[J]. Journal of The Textile Institute, 2013, 104(9):972-979.
doi: 10.1080/00405000.2013.767430
[13] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(5):56-61.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond-spunlace nonwoven materials with gradient structure[J]. Journal of Textile Research, 2018, 39(5):56-61.
[14] 刘凡, 钱晓明, 赵宝宝, 等. 柔软处理对涤/锦纶6中空桔瓣型超细纤维非织造布性能的影[J]. 纺织学报, 2018, 39(3):114-119.
LIU Fan, QIAN Xiaoming, ZHAO Baobao, et al. Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens[J]. Journal of Textile Research, 2018, 39(3):114-119.
[15] BUEHLER M J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12285-12290.
doi: 10.1073/pnas.0603216103 pmid: 16895989
[16] GAUTIERI A, REDAELLI A, BUEHLER M J, et al. Age and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in advanced glycation end-products[J]. Matrix Biology, 2014, 34:89-95.
doi: 10.1016/j.matbio.2013.09.004 pmid: 24060753
[17] 孙静. 红外光谱技术在纺织品检测中的应用[J]. 纺织检测与标准, 2019, 5(6):5-7.
SUN Jing. Application of infrared spectrometer in textile testing[J]. Textile Testing and Standard, 2019, 5(6):5-7.
[18] 王钦, 封严, 赵东. 聚酯/锦纶6双组分纺粘水刺非织造布的光接枝亲水亲油改性[J]. 纺织学报, 2015, 36(11):99-102.
WANG Qin, FENG Yan, ZHAO Dong. Hydrophilic-lipophilic modification of PET/PA6 bicomponent spunbonded spunlaced nonwovens by ultraviolet grafting[J]. Journal of Textile Research, 2015, 36(11):99-102.
[19] 刁彩虹, 肖长发, 马艳霞. 高吸湿性聚丙烯腈纤维的制备[J]. 纺织学报, 2010, 31(9):1-4.
DIAO Caihong, XIAO Changfa, MA Yanxia. Preparation of high moisture absorbent polyacrylonitrile fibers[J]. Journal of Textile Research, 2010, 31(9):114-119.
[1] 占镠祥, 李婉, 王高军, 赵先丽, 王妮, 李毓陵. 微波处理在蛋白质纤维加工中的应用研究进展[J]. 纺织学报, 2020, 41(08): 128-134.
[2] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[3] 吕汉明, 王翔宇, 刘凤坤. 基于介电谱的醋酸酯水刺非织造布含水率估算[J]. 纺织学报, 2020, 41(06): 55-60.
[4] 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127.
[5] 张美玲 沈忆文 王瑞 李先锋 郑广伟. 芳纶纤维的冷等离子体处理及其老化性能[J]. 纺织学报, 2018, 39(11): 73-78.
[6] 张寅江 王荣武 靳向煜. 湿法水刺可分散材料的结构与性能及其发展趋势[J]. 纺织学报, 2018, 39(06): 167-174.
[7] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[8] 王迎 杨云 魏春艳 宋欢 季英超 孙玉雍 张欣. 沉积静电纺聚丙烯腈纳米纤维膜窗纱的制备及其性能[J]. 纺织学报, 2018, 39(04): 14-18.
[9] 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93.
[10] 李智勇 邵一卿 孙窈 张亮 夏鑫. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10): 7-12.
[11] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[12] 王敏 韩建 于斌 朱斐超 Solitario Nesti 宋卫民. 双组分橘瓣型纺粘水刺材料的过滤和力学性能[J]. 纺织学报, 2016, 37(09): 16-20.
[13] 张寅江 徐小萍 靳向煜 张志奋. 基于网孔结构非织造布的弹性回复性能[J]. 纺织学报, 2013, 34(7): 22-26.
[14] 楼利琴 励宏 黄锐镇. 不同混纺比芳纶、芳砜纶隔热层水刺非织造布性能分析[J]. 纺织学报, 2013, 34(6): 46-50.
[15] 徐小萍 张寅江 靳向煜 吴洁. 壳聚糖/粘胶水刺非织造布的制备及相关性能[J]. 纺织学报, 2013, 34(6): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!