纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 102-107.doi: 10.13475/j.fzxb.20190803606

• 染整与化学品 • 上一篇    下一篇

涤纶织物的氧化石墨烯负载及其抗静电性能

李亮1,2,3, 刘静芳4, 胡泽栋4, 耿长军4, 刘让同1,2,4()   

  1. 1.纺织服装河南省协同创新中心, 河南 郑州 451191
    2.河南省功能纺织材料重点试验室, 河南 郑州 451191
    3.中原工学院 纺织学院, 河南 郑州 451191
    4.中原工学院 服装学院, 河南 郑州 451191
  • 收稿日期:2019-08-13 修回日期:2020-04-05 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 刘让同
  • 作者简介:李亮(1983—),男,讲师,硕士。主要研究方向为新型纺织材料与纺织品整理。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Graphene oxide loading on polyester fabrics and antistatic properties

LI Liang1,2,3, LIU Jingfang4, HU Zedong4, GENG Changjun4, LIU Rangtong1,2,4()   

  1. 1. Collaborative Innovation Center of Textiles and Clothing in Henan Province, Zhengzhou, Henan 451191, China
    2. Henan Province Key Laboratory of Functional Textile Materials, Zhengzhou, Henan 451191, China
    3. Textile College, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    4. Fashion Technology College, Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
  • Received:2019-08-13 Revised:2020-04-05 Online:2020-09-15 Published:2020-09-25
  • Contact: LIU Rangtong

摘要:

为解决涤纶织物的易起静电问题,通过多巴胺原位聚合和氧化石墨烯循环浸渍层层自组装负载实现其抗静电功能,制备一种涤纶基抗静电织物。借助扫描电子显微镜、红外光谱仪、织物静电测试仪等表征织物的结构和抗静电性能。结果表明:多巴胺的引入有利于氧化石墨烯的负载,同时增加织物表面的亲水基团,直接改善涤纶织物的抗静电性能;当氧化石墨烯质量浓度低于20 g/L时,随着其质量浓度的增加,织物的抗静电性能逐渐提高,当质量浓度保持在15 g/L时,平纹涤纶织物的表面静电压和半衰期分别为1 156 V、1.210 s,斜纹涤纶织物的表面静电压和半衰期则为1 243 V、1.510 s;经15次水洗,平纹涤纶织物的表面静电压和半衰期仍能达到1 179 V和1.290 s,斜纹涤纶织物表面静电压和半衰期可达1 263 V和1.580 s。

关键词: 涤纶织物, 多巴胺, 氧化石墨烯, 抗静电性, 抗静电整理

Abstract:

In order to solve the electrostatic problem of polyester fabrics, the polyester fabric specimens was cyclically impregnated in graphene oxide solution after treated by in-situ polymerization of dopamine. The structure and antistatic property of the polyester fabric were characterized by scanning electron microscope, infrared spectrometer and fabric electrostatic tester. The results show that the introduction of dopamine is beneficial to the loading of graphene oxide, and the hydrophilic groups are increased to improve the antistatic performance of polyester fabric after treatment. When the graphene concentration keeps lower than 20 g/L, with the increase of graphene oxide concentration, the antistatic property of the fabric is gradually improved. When the concentration of graphene oxide is 15 g/L, the surface static voltage and half-life of the plain polyester fabric are 1 156 V and 1.210 s respectively, while that of twill polyester fabric are 1 243 V and 1.510 s. After 15 cycles of washing, the surface static voltage and half-life of the plain polyester fabric could still reach 1 179 V and 1.290 s, while that of twill can also reach 1 263 V and 1.580 s.

Key words: polyester fabric, dopamine, graphene oxide, antistatic property, antistatic finishing

中图分类号: 

  • TS195

图1

多巴胺涤纶表面原位聚合负载GO机制 注:R1为涤纶纤维分子结构重复单元。"

图2

涤纶织物的SEM照片"

图3

多巴胺原位聚合、GO负载前后涤纶织物的红外光谱图"

图4

多巴胺原位聚合、涤纶织物负载GO前后XRD图"

图5

涤纶织物负载GO前后的TG和DTG曲线"

表1

不同整理方案涤纶织物水洗前的抗静电性"

整理方案 平纹织物 斜纹织物
静电压/V 静电压
标准差/V
半衰期/s 半衰期
标准差/s
静电压/V 静电压
标准差/V
半衰期/s 半衰期
标准差/s
未经多巴胺和GO整理 3 835 300.000 3 982 300.000
多巴胺 3 417 ±6.811 13.040 ±0.010 3 524 ±1.000 13.460 ±0.036
多巴胺+5 g/L GO 2 687 ±4.643 7.630 ±0.026 2 876 ±2.645 8.290 ±0.035
多巴胺+10 g/L GO 1 332 ±2.582 1.860 ±0.043 1 621 ±3.165 2.660 ±0.010
多巴胺+15 g/L GO 1 156 ±1.244 1.210 ±0.020 1 243 ±3.134 1.510 ±0.072
多巴胺+20 g/L GO 1 226 ±8.605 1.530 ±0.065 1 436 ±6.221 1.830 ±0.088

表2

不同整理方案涤纶织物水洗15次后的抗静电性"

整理方案 平纹织物 斜纹织物
静电压/V 静电压
标准差/V
半衰期/s 半衰期
标准差/s
静电压/V 静电压
标准差/V
半衰期/s 半衰期
标准差/s
未经多巴胺和GO整理
多巴胺 3 487 ±5.165 13.290 ±0.020 3 614 ±4.848 13.700 ±0.010
多巴胺+5 g/L GO 2 722 ±1.000 7.780 ±0.036 2 915 ±1.605 8.390 ±0.026
多巴胺+10 g/L GO 1 367 ±3.211 2.020 ±0.017 1 652 ±0.732 2.750 ±0.034
多巴胺+15 g/L GO 1 179 ±0.983 1.290 ±0.026 1 263 ±1.645 1.580 ±0.010
多巴胺+20 g/L GO 1 266 ±7.193 1.700 ±0.060 1 501 ±8.074 1.980 ±0.091

图6

织物水洗后静电压和半衰期变化率"

图7

涤纶织物水洗后SEM照片"

[1] CHEN S G, ZHANG S B, GALLUZZI M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy[J]. Chem Eng, 2019, 358:634-642.
[2] CHAUDHARY H, GUPTA D, GUPTA C. Multifunctional dyeing and finishing of polyester with sericin and basic dyes[J]. Journal of The Textile Institute, 2017, 108:314-324.
doi: 10.1080/00405000.2016.1165401
[3] CASTILLO G A, WILSON L, EFIMENK K, et al. Amidation of polyesters is slow in nonaqueous solvents: efficient amidation of poly (ethylene terephthalate) with 3-aminopropyltriethoxysilane in water for generating multifunction surfaces[J]. ACS Appl Mater Inter, 2016, 8:35641-35649.
[4] LV J, ZHOU Q, LIU G, et al. Preparation and properties of polyester fabrics grafted with O-carboxymethyl chitosan[J]. Carbohydrate Polymers, 2014, 113:344-352.
doi: 10.1016/j.carbpol.2014.06.088
[5] WANG C, GUO R H, LAN J W, et al. Preparation of multi-functional fabric via sliver/reduced graphene oxide coating with poly (diallyldimethylammonium choride) modification[J]. Mater Sci Mater Electron, 2018, 29:8010-8019.
doi: 10.1007/s10854-018-8807-8
[6] KUGIMOTO Y, WAKABAYASHI A, DOBASHI T, et al. Preparation and characterization of composite coatings containing a quaternary ammonium salt as an antistatic agent[J]. Prog Org Coat, 2016, 92:80-84.
[7] 胡雪敏, 申保雷, 张朔, 等. 涤纶织物石墨烯-Fe3O4复合溶液抗静电整理[J]. 印染, 2019(6):53-55.
HU Xuemin, SHEN Baolei, ZHANG Shuo, et al. Antistatic finishing of polyester fabric with graphene/ Fe3O4[J]. China Dyeing & Finishing, 2019(6):53-55.
[8] 陈小婷, 吴诗雯, 任豪, 等. 石墨烯在抗静电涤纶织物上的应用[J]. 印染, 2019(3):10-13.
CHEN Xiaoting, WU Shiwen, REN Hao, et al. Antistatic finish of polyester fabric with graphene[J]. China Dyeing & Finishing, 2019(3):10-13.
[9] ZHANG Q, YANG Q, PHANLAVONG P, et al. Highly efficient lead(Ⅱ) sequestration using size- controllable polydopamine microspheres with superior application capability and rapid capture[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5):4161-4170.
[10] LEE H, SCHERER N F, MESSERSMITH P B. Single- molecule mechanics of mussel adhesion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35):12999-13003.
doi: 10.1073/pnas.0605552103 pmid: 16920796
[11] LI J, WEN X M, ZHANG W, et al. A bio-mimetic approach to enhancing interfacial interactions: poly dopamine coated silica as reinforcement for epoxy resin[J]. Advanced Materials Research, 2014, 1015(2):721-724.
[12] MARJAN B, MAJID M, FARHAD S, et al. A textile-based wearable super- capacitor using reduced grapheme oxide/ polypyrrole composite[J]. Electro-chimica Acta, 2019, 305:187-196.
[1] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56 用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[2] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[7] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[8] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[9] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[10] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[11] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[12] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[13] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[14] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[15] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!