纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 167-173.doi: 10.13475/j.fzxb.20190805907
WU Hong, LIU Chengkun(), MAO Xue, YANG Zhi, CHEN Meiyu
摘要:
针对现有制备方法获得二氧化锆(ZrO2)纳米纤维膜柔性不足的问题,综述了近年来利用静电纺丝技术在制备柔性ZrO2纳米纤维膜方面的研究进展。基于现有研究成果,从前驱体溶液、静电纺丝工艺和煅烧温度3方面系统阐述了静电纺制备柔性ZrO2纳米纤维膜的工艺流程,并概述了纤维形貌、孔隙结构和晶体结构对柔性ZrO2纳米纤维膜的影响,介绍了柔性ZrO2纳米纤维膜在能源、生物等领域的应用。最后指出:采用静电纺丝技术制备的柔性ZrO2纳米纤维膜具有比表面积大、耐热性高等一系列优异特性,但仍存在纤维膜韧性相对较差的缺陷,尚无法满足实际工况要求;提高柔性ZrO2纳米纤维膜的整体力学性能,并进行批量化制造,以满足实际应用是未来研究的重点。
中图分类号:
[1] |
LUO J M, LUO X B, HU C Z, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies[J]. ACS Applied Materials & Interfaces, 2016,8(29):18912-18921.
doi: 10.1021/acsami.6b06046 pmid: 27381268 |
[2] | 白莹, 毛雪, 俞建勇, 等. 柔性YSZ-TiO2纳米纤维膜的制备及其光催化性能研究[J]. 化工新型材料, 2018,46(3):67-74. |
BAI Ying, MAO Xue, YU Jianyong, et al. Preparation and photocatalytic performance of flexuble YSZ-TiO2 nanofibrous membrane[J]. New Chemical Materials, 2018,46(3):67-74. | |
[3] | KOO J Y, LIM Y, KIM Y B, et al. Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2017,42(24):15903-15907. |
[4] | ZHI M J, LEE S, MILLER N, et al. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode[J]. Energy & Environmental Science, 2012,5(5):7066-7071. |
[5] |
JAYAKUMAR R, RAMACHANDRAN R, KUMAR P T S, et al. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applica-tions[J]. International Journal of Biological Macromolecules, 2011,49(3):274-280.
pmid: 21575656 |
[6] |
CHAN K, TSOI J K H, WU O K, et al. Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with oxide ceramics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97:229-237.
pmid: 31132659 |
[7] |
ABE Y, KUDO T, TOMIOKA H, et al. Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction[J]. Journal of Materials Science, 1998,33(7):1863-1870.
doi: 10.1023/A:1004357405815 |
[8] | YANG J, YOO J J, JANG H J, et al. Preparation and characterization of PAN based carbon fibers having zirconia nanofibers[J]. IEEE Transactions on Software Engineering, 2012,49(5):307-313. |
[9] | BUKHARI B S, IMRAN M, BASHIR M, et al. Honey mediated microwave assisted sol-gel synjournal of stabilized zirconia nanofibers[J]. Journal of Sol-Gel Science and Technology, 2018,87(3):554-567. |
[10] | 吕婷婷, 安瑛, 李好义, 等. 静电纺动物蛋白纳米纤维研究进展[J]. 纺织学报, 2019,40(12):140-145. |
LÜ Tingting, AN Ying, LI Haoyi, et al. Research progress of electrospun animal protein nanofibers[J]. Journal of Textile Research, 2019,40(12):140-145. | |
[11] | SHAO C L, GUAN H Y, LIU Y C, et al. A novel method for making ZrO2 nanofibres via an electrospinning technique[J]. Journal of Crystal Growth, 2004,267(1/2):380-384. |
[12] | YE Y P, LI J G, ZHOU H D, et al. Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics[J]. Ceramics International, 2008,34(8):1797-1803. |
[13] | 郭景坤. 关于陶瓷材料的脆性问题[J]. 复旦学报(自然科学版), 2003(6):822-827. |
GUO Jingkun. The brittleness problem of ceramic material[J]. Journal of Fudan (Natural Science Edition), 2003(6):822-827. | |
[14] | 潘梅, 刘久荣, 孟凡青, 等. ZrO2连续纤维研究进展[J]. 硅酸盐通报, 2001,20(1):41-45. |
PAN Mei, LIU Jiurong, MENG Fanqing, et al. A review of research on zirconia fibres[J]. Bulletin of The Chinese Ceramic Society, 2001,20(1):41-45. | |
[15] | 胡晓敏, 高杨, 吴宁, 等. 静电纺丝制备无机纳米纤维及应用进展[J]. 山东纺织科技, 2016,57(1):52-56. |
HU Xiaomin, GAO Yang, WU Ning, et al. Preparation and application of inorganic nanofibers by electrospinning[J]. Shandong Textile Science & Technology, 2016,57(1):52-56. | |
[16] | QIN D K, GU A J, LIANG G Z, et al. A facile method to prepare zirconia electrospun fibers with different morphologies and their novel composites based on cyanate ester resin[J]. RSC Aadvances, 2012,2(4):1364-1372. |
[17] | TUNC T, USLU I. Fabrication and characterization of boron doped yttria-stabilized zirconia nanofibers[J]. Polymer Engineering and Science, 2013,53(5):963-969. |
[18] | LI L P, ZHANG P G, LIANG J D, et al. Phase transformation and morphological evolution of electrospun zirconia nanofibers during thermal annealing[J]. Ceramics International, 2010,36(2):589-594. |
[19] |
WANG H, DUAN Y K, ZHONG W W. ZrO2 nanofiber as a versatile tool for protein analysis[J]. ACS Applied Materials & Interfaces, 2015,7(48):26414-26420.
doi: 10.1021/acsami.5b09348 pmid: 26571083 |
[20] | YIN L F, NIU J F, SHEN Z Y, et al. Preparation and photocatalytic activity of nanoporous zirconia electrospun fiber mats[J]. Materials Letters, 2011,65(19/20):3131-3133. |
[21] | RODAEV V V, ZHIGACHEV A O, KORENKOV V V, et al. The influence of zirconia precursor/binding polymer mass ratio in the intermediate electrospun composite fibers on the phase transformation of final zirconia nanofibers[J]. Physica Status Solidi A: Applications and Materials Science, 2016,213(9):2352-2355. |
[22] | SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Fabrication and optimization of poly(vinyl alcohol)/zirconium acetate electrospun nanofibers using taguchi experimental design[J]. Journal of Macromolecular Science Part B:Physics, 2015,54(11):1391-1403. |
[23] | RODAEV V V, ZHIGACHEV A O, GOLOVIN Y I. Fabrication and characterization of electrospun ZrO2/Al2O3 nanofibers[J]. Ceramics International, 2017,43(17):16023-16026. |
[24] |
WANG H L, MA X K, LI Y A, et al. Synjournal, antimicrobial and release of chloroamphenicol loaded poly(L-lactic acid)/ZrO2 nanofibrous membranes[J]. International Journal of Biological Macromolecules, 2013,62:494-499.
pmid: 24120960 |
[25] |
KOO J Y, HWANG S, AHN M, et al. Controlling the diameter of electrospun yttria-stabilized zirconia nanofibers[J]. Journal of the American Ceramic Society, 2016,99(9):3146-3150.
doi: 10.1111/jace.14331 |
[26] |
THAKARE V G, JOSHI P A, GODSE R R, et al. Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique[J]. Journal of Polymer Research, 2017. DOI: 10.1007/s10965-017- 1388-z.
doi: 10.34133/2019/2389254 pmid: 31922131 |
[27] |
MILSOM B, VIOLA G, GAO Z P, et al. The effect of carbon nanotubes on the sintering behaviour of zirconia[J]. Journal of the European Ceramic Society, 2012,32(16):4149-4156.
doi: 10.1016/j.jeurceramsoc.2012.07.028 |
[28] |
NAYEBZADEH H, SAGHATOLESLAMI N, TABASIZADEH M. Application of microwave irradiation for fabrication of sulfated ZrO2-Al2O3 nanocomposite via combustion method for esterification reaction: process condition evaluation[J]. Journal of Nanostructure in Chemistry, 2019,9(2):141-152.
doi: 10.1007/s40097-019-0304-y |
[29] | 李微, 刘凤华, 吴大旺. 柔性钇稳定氧化锆纳米纤维的制备[J]. 广州化工, 2018,46(10):45-49. |
LI Wei, LIU Fenghua, WU Dawang. Preparation of flexible yttria-stabilized zirconia nanofibers[J]. Guangzhou Chemical Industry, 2018,46(10):45-49. | |
[30] | 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 50-59. |
DING Bin, YU Jianyong. Electrosinning and nano-fibers[M]. Beijing: China Textile & Apparel Press, 2011: 50-59. | |
[31] |
SUN Y J, QU J K, GUO Q, et al. Preparation of fine-grained silica-doped zirconia fibers by electrospin-ning[J]. Ceramics International, 2017,43(15):12551-12556.
doi: 10.1016/j.ceramint.2017.06.129 |
[32] |
ZHANG H B, EDIRISINGHE M J. Electrospinning zirconia fiber from a suspension[J]. Journal of the American Ceramic Society, 2006,89(6):1870-1875.
doi: 10.1111/jace.2006.89.issue-6 |
[33] |
SALIGHEH O, KHAJAVI R, YAZDANSHENAS M E, et al. Production and characterization of zirconia (ZrO2) ceramic nanofibers by using electrospun poly(vinyl alcohol)/zirconium acetate nanofibers as a pre-cursor[J]. Journal of Macromolecular Science Part B:Physics, 2016,55(6):605-616.
doi: 10.1080/00222348.2016.1179165 |
[34] |
CASTKOVA K, MACA K, SEKANINOVA J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceramics International, 2017,43(10):7581-7587.
doi: 10.1016/j.ceramint.2017.03.050 |
[35] | 毛雪. ZrO2基纳米纤维膜的柔性机制及其应用研究[D]. 上海:东华大学, 2016: 67-71. |
MAO Xue. Flexible mechanism of ZrO2 based nanofiberous membranes and their application[D]. Shanghai: Donghua University, 2016: 67-71. | |
[36] |
WANG H L, LIN S, YANG S, et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge[J]. Small, 2018. DOI: 10.1002/smll.201800258.
doi: 10.1002/smll.202005728 pmid: 33470521 |
[37] |
WANG Y, HAN C, ZHENG D, et al. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition[J]. Journal of Materials Chemistry A, 2014,2(25):9607-9612.
doi: 10.1039/c4ta00347k |
[38] |
CHATTOPADHYAY S, BYSAKH S, SAHA J, et al. Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays[J]. Dalton Transactions, 2018,47(16):5789-5800.
doi: 10.1039/c8dt00415c pmid: 29644370 |
[39] |
MAO X, SHAN H R, SONG J, et al. Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes[J]. Crystengcomm, 2016,18(7):1139-1146.
doi: 10.1039/C5CE02382C |
[40] |
CHEN Y C, MAO X, SHAN H R, et al. Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration[J]. RSC Advances, 2014,4(6):2756-2763.
doi: 10.1039/c3ra45043k |
[41] | CHRASKA T, KING A H, BERNDT C C, et al. On the size-dependent phase transformation in nanoparticulate zirconia[J]. Materials Science & Engineering A, 2000,286(1):169-178. |
[42] |
SUN G X, LIU F T, BI J Q, et al. Electrospun zirconia nanofibers and corresponding formation mechanism study[J]. Journal of Alloys and Compounds, 2015,649:788-792.
doi: 10.1016/j.jallcom.2015.03.068 |
[43] |
YIN X, XIE X Y, SONG L X, et al. The application of highly flexible ZrO2/C nanofiber films to flexible dye-sensitized solar cells[J]. Journal of Materials Science, 2017,52(18):11025-11035.
doi: 10.1007/s10853-017-1287-z |
[44] |
YIN X, XIE X Y, SONG L X, et al. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode[J]. Applied Surface Science, 2018,440:992-1000.
doi: 10.1016/j.apsusc.2018.01.264 |
[45] |
GAZQUEZ G C, CHEN H L, VELDHUIS S A, et al. Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells[J]. ACS Nano, 2016,10(6):5789-5799.
pmid: 27294434 |
[46] |
GUO G Q, FAN Y W, ZHANG J F, et al. Novel dental composites reinforced with zirconia-silica ceramic nanofibers[J]. Dental Materials, 2012,28(4):360-368.
doi: 10.1016/j.dental.2011.11.006 pmid: 22153326 |
[47] |
MAO X, BAI Y, YU J Y, et al. Insights into the flexibility of ZrMxOy (M=Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials[J]. Dalton Transactions, 2016,45(15):6660-6666.
doi: 10.1039/c6dt00319b pmid: 26974663 |
[48] |
LIU X F, LAI Y K, HUANG J Y, et al. Hierarchical SiO2@Bi2O3 core/shell electrospun fibers for infrared stealth camouflage[J]. Journal of Materials Chemistry C, 2015,3(2):345-351.
doi: 10.1039/C4TC01873G |
[49] |
ZHANG X S, XU D, ZHOU G J, et al. Color tunable up-conversion emission from ZrO2: Er3+,Yb3+ textile fibers[J]. RSC Advances, 2016,6(106):103973-103980.
doi: 10.1039/C6RA20388D |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[11] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[12] | 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22. |
[13] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[14] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
[15] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
|