纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 121-128.doi: 10.13475/j.fzxb.20190901308
ZHENG Hongfei, WANG Ruiqi, WANG Qing, ZHU Ying, XU Yunhui()
摘要:
为获得持久抗菌的功能丝绸材料,采用硝酸、磷酸、亚硝酸钠体系将原料壳聚糖的C6位伯羟基选择性氧化为羧基制得水溶性氧化壳聚糖(OCS),使OCS的羧基与脱胶蚕丝织物(SFF)的氨基反应,得到氧化壳聚糖改性蚕丝织物(OCSMSF)。借助核磁共振仪、扫描电子显微镜、红外光谱仪、X射线衍射仪等手段表征了OCS与OCSMSF的化学结构,测试了OCSMSF的力学、吸湿、抗菌等性能。结果表明:酰胺反应已将氧化壳聚糖分子化学键合在SFF中,OCS改性蚕丝纤维的结晶度降低;在优化反应参数条件下,OCS接枝蚕丝织物的质量增加率达到9.17%,OCSMSF的强力略有减小,而吸湿性提高42.92%,OCSMSF对测试细菌的抑菌率大于94%,且抗菌耐洗涤性好,同时OCSMSF对仙人掌黄酮提取物有良好的缓释效果。
中图分类号:
[1] | VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007,32(8):991-1007. |
[2] | 杨莹莹, 吕智宁, 田伟, 等. 木薯蚕丝结构与性能表征[J]. 纺织学报, 2017,38(6):1-5. |
YANG Yingying, LÜ Zhining, TIAN Wei, et al. Structure and properties of cassava silk[J]. Journal of Textile Research, 2017,38(6):1-5.
doi: 10.1177/004051756803800101 |
|
[3] | LI G H, LIU H, LI T D, et al. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications[J]. Materials Science & Engineering, 2012,32(4):627-636. |
[4] | 刘慧, 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016,37(7):104-108. |
LIU Hui, XU Yinglian. Influence of nano-ZnO finishing on anti-UV properties of silk fabrics[J]. Journal of Textile Research, 2016,37(7):104-108. | |
[5] | RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006,31(7):603-632. |
[6] | 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019,40(5):170-176. |
QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers[J]. Journal of Textile Research, 2019,40(5):170-176. | |
[7] | MONTEIRO O A C, AIROLDI C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system[J]. International Journal of Biological Macromolecules, 1999,26(3):119-128. |
[8] | FERRERO F C, PERIOLATTO M C, BURELLI S R, et al. Silk grafting with chitosan and crosslinking agents[J]. Fibers and Polymers, 2010,11(2):185-192. |
[9] | DAVARPANAH S, MAHMOODI NIYAZ M, ARAMI M, et al. Environmentally friendly surface modification of silk fiber: chitosan grafting and dyeing[J]. Applied Surface Science, 2009(255):4171-4176. |
[10] | HUANG J W, QIN J Z, ZHANG P, et al. Facile preparation of a strong chitosan-silk biocomposite film[J]. Carbohydrate Polymers, 2020(229):515-523. |
[11] | LILLO L E, MATSUHIRO B. Chemical modifications of carboxylated chitosan[J]. Carbohydrate Polymers, 1997(34):397-401. |
[12] | YOO S H, LEE J S, PARK S Y, et al. Effects of selective oxidation of chitosan on physical and biological properties[J]. International Journal of Biological Macromolecules, 2005(35):27-31. |
[13] | TERADA N, MORIMOTO M, SAIMOTO H, et al. Regioselective synjournal and biological activity of oxidized chitosan[J]. Polymers for Advanced Technologies, 2003(14):40-51. |
[14] | YANG Y D, ZHOU Y G, CHOU H M, et al. Blood compatibility and mechanical properties of oxidized-chitosan films[J]. Journal of Applied Polymer Science, 2007,106(1):372-377. |
[15] |
BORDENAVE N L, GRELIER S P, COMA V N. Advances on selective C-6 oxidation of chitosan by TEMPO[J]. Biomacromolecules, 2008,9(9):2377-2382.
pmid: 18700797 |
[16] | 许云辉, 钟娇, 杜兆芳, 等. 一种水溶性抗菌单羧基壳聚糖及其制备方法和应用: ZL201510563693.X[P]. 2015-09-07. |
XU Yunhui, ZHONG Jiao, DU Zhaofang, et al. Preparation method and application of a water-soluble antibacterial 6-carboxylic chitosan: ZL201510563 693.X [P]. 2015-09-07. | |
[17] | LU Y H, LIN H, CHEN Y Y, et al. Structure and performance of Bombyx mori silk modified with nano-TiO2 and chitosan[J]. Fibers and Polymers, 2007,8(1):1-6. |
[18] | YAMAMOTO O M. Influence of particle size on the antibacterial activity of zinc oxide[J]. International Journal of Inorganic Materials, 2001,3(7):643-646. |
[19] | XU Y H, QIU C, ZHANG X L, et al. Crosslinking chitosan into H3PO4/HNO3-NANO2 oxidized cellulose fabrics as antibacterial-finished material[J]. Carbohydrate Polymers, 2014(112):186-194. |
[20] | DE NOOY A E J, BESEMER A C. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution: kinetics and mechanism[J]. Tetrahedron, 1995,51(29):8023-8032. |
[21] | ARAI T, FREDDI G, INNOCENTI R, et al. Acylation of silk and wool with acid anhydrides and preparation of water-repellent fibers[J]. Journal of Applied Polymer Science, 2001,82(11):2832-2841. |
[22] | FEUGANG J M, KONARSKI P, ZOU D, et al. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits[J]. Frontiers in Bioscience, 2006,11(2):2574-2589. |
[1] | 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95. |
[2] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[3] | 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85. |
[4] | 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92. |
[5] | 王浩, 杜兆芳, 许云辉. 氧化壳聚糖/丝胶复合物的制备及其对棉织物的功能整理[J]. 纺织学报, 2019, 40(11): 119-124. |
[6] | 江华, 张志恒, 蔡金芳, 陈维国, 崔志华, 孙岩峰. 芳伯胺染料对蚕丝织物的重氮化-偶合染色及工艺调控[J]. 纺织学报, 2019, 40(11): 100-105. |
[7] | 叶嘉浩, 王莉莉, 吴明华, 郭文登, 汪可豪, 陈妮. 蚕丝织物同花同色双面数码喷墨印花上浆工艺[J]. 纺织学报, 2019, 40(10): 92-97. |
[8] | 关晋平, 匡小慧, 唐人成, 陈国强. 氯化铁对多巴胺改性蚕丝织物的功能整理[J]. 纺织学报, 2019, 40(02): 130-134. |
[9] | 姚强, 郭静, 吴静. 化学交联改性海藻酸钠/磷虾蛋白复合纤维的制备[J]. 纺织学报, 2019, 40(02): 8-13. |
[10] | 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88. |
[11] | 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92. |
[12] | 陈云博 陈国强 邢铁玲. 磷酸硼掺杂硅溶胶对蚕丝织物的阻燃整理[J]. 纺织学报, 2017, 38(08): 96-101. |
[13] | 刘慧 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016, 37(07): 104-108. |
[14] | 王紫颖 沈一峰 杨雷 郭云. 乙烯基磷氮类阻燃剂在蚕丝织物上的应用[J]. 纺织学报, 2015, 36(07): 77-82. |
[15] | 路艳华 卢声 于志财. 青黛与姜黄对柞蚕丝织物的套染[J]. 纺织学报, 2013, 34(9): 73-0. |
|