纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 121-128.doi: 10.13475/j.fzxb.20190901308

• 染整与化学品 • 上一篇    下一篇

氧化壳聚糖改性抗菌蚕丝织物的制备及其性能

郑宏飞, 汪瑞琪, 汪庆, 朱莹, 许云辉()   

  1. 安徽农业大学 轻纺工程与艺术学院, 安徽 合肥 230036
  • 收稿日期:2019-09-03 修回日期:2020-02-03 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 许云辉
  • 作者简介:郑宏飞(1994—),男,硕士生。主要研究方向为纤维改性与生物质材料加工应用。
  • 基金资助:
    安徽省科技重大专项计划项目(17030701018);安徽省科技重大专项计划项目(16030701089);安徽省自然科学基金项目(1708085ME115);苏州市吴江区科技领军人才项目(吴科〔2018〕131号);安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016034)

Preparation and properties of antibacterial silk fabric modified with oxidized chitosan

ZHENG Hongfei, WANG Ruiqi, WANG Qing, ZHU Ying, XU Yunhui()   

  1. College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China
  • Received:2019-09-03 Revised:2020-02-03 Online:2020-05-15 Published:2020-06-02
  • Contact: XU Yunhui

摘要:

为获得持久抗菌的功能丝绸材料,采用硝酸、磷酸、亚硝酸钠体系将原料壳聚糖的C6位伯羟基选择性氧化为羧基制得水溶性氧化壳聚糖(OCS),使OCS的羧基与脱胶蚕丝织物(SFF)的氨基反应,得到氧化壳聚糖改性蚕丝织物(OCSMSF)。借助核磁共振仪、扫描电子显微镜、红外光谱仪、X射线衍射仪等手段表征了OCS与OCSMSF的化学结构,测试了OCSMSF的力学、吸湿、抗菌等性能。结果表明:酰胺反应已将氧化壳聚糖分子化学键合在SFF中,OCS改性蚕丝纤维的结晶度降低;在优化反应参数条件下,OCS接枝蚕丝织物的质量增加率达到9.17%,OCSMSF的强力略有减小,而吸湿性提高42.92%,OCSMSF对测试细菌的抑菌率大于94%,且抗菌耐洗涤性好,同时OCSMSF对仙人掌黄酮提取物有良好的缓释效果。

关键词: 蚕丝织物, 氧化壳聚糖, 交联改性, 抗菌织物, 释药载体

Abstract:

In order to acquire durable antibacterial silk materials, the hydroxyl of C6 site in original chitosan (CS) was selectively oxidized to the carboxyl by HNO3/H3PO4-NaNO2 mediate system and obtained the water-soluble oxidized chitosan (OCS), and then the chemical bond was formed through the amide reaction between carboxyl groups in oxidized chitosan and amino groups of silk fibroin fabric (SFF) to get antimicrobial silk fibroin materials (OCSMSF). Nuclear magnetic resonance, Scanning electron microscopy, Infrared spectroscopy and X-ray diffraction were used to test the chemical structure of OCS and OCSMSF, moreover, the mechanics, hygroscopicity and antibacterial activity of OCSMSF materials were also measured. The results suggest that the carboxylic chitosan molecules are crosslinked into SFF by the amide reaction, and the degree of crystallinity for SFF materials grafted with OCS decrease. The oxidized chitosan weight gain of 9.17% for the modified silk fabric is achieved under the condition of optimized reaction parameters, the tensile strength of grafted silk fabrics reduces slightly, whereas the moisture adsorption of the modified SFF increases 42.92%. Furthermore, the antimicrobial ratio of the grafted SFF against the tested bacteria exceedes 94%, as well as still high antibacterial activity after washing; meanwhile, a good efficiency of sustained release cactus flavonoid extract using the OCSMSF is performed. The OCS grafted silk materials have potential application prospect in antibacterial materials or carrier materials of release drug.

Key words: silk fabric, oxidized chitosan, crosslink modification, antibacterial, release carrier

中图分类号: 

  • TS102.3

图1

原壳聚糖和氧化壳聚糖共振的固相13C核磁共振谱图"

图2

原壳聚糖和氧化壳聚糖的红外光谱"

图3

壳聚糖选择性氧化和羧基壳聚糖与SFF交联反应机制"

图4

OCS反应参数对SFF质量增加率的影响"

图5

SFF和OCSMSF材料的SEM照片(×1 000)"

图6

SFF和OCSMSF材料的ATR-FTIR图谱"

图7

SFF和OCS及OCSMSF材料的XRD图谱"

图8

SFF和OCSMSF材料的拉伸强力和吸湿性能"

表1

SFF和OCSMSF材料控释仙人掌提取物的吸光度"

时间/d 吸光度
SFF OCSMSF
(质量增加率为9.17%)
4 0.485 0.708
6 0.337 0.616
8 0.124 0.627
10 0.109 0.583
剩余仙人掌提取物 0.231 1.271

表2

羧基壳聚糖交联蚕丝材料的抑菌率"

测试
菌种
洗涤
次数
抑菌率/%
SFF OCSMSF
(质量增加率
为4.34%)
OCSMSF
(质量增加率
为9.17%)
S. aureus 0 0 92.91 99.46
20 89.64 97.19
30 88.08 93.86
E. coli 0 0 86.78 94.08
20 84.37 91.72
30 79.36 90.75
[1] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007,32(8):991-1007.
[2] 杨莹莹, 吕智宁, 田伟, 等. 木薯蚕丝结构与性能表征[J]. 纺织学报, 2017,38(6):1-5.
YANG Yingying, LÜ Zhining, TIAN Wei, et al. Structure and properties of cassava silk[J]. Journal of Textile Research, 2017,38(6):1-5.
doi: 10.1177/004051756803800101
[3] LI G H, LIU H, LI T D, et al. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications[J]. Materials Science & Engineering, 2012,32(4):627-636.
[4] 刘慧, 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016,37(7):104-108.
LIU Hui, XU Yinglian. Influence of nano-ZnO finishing on anti-UV properties of silk fabrics[J]. Journal of Textile Research, 2016,37(7):104-108.
[5] RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006,31(7):603-632.
[6] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019,40(5):170-176.
QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers[J]. Journal of Textile Research, 2019,40(5):170-176.
[7] MONTEIRO O A C, AIROLDI C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system[J]. International Journal of Biological Macromolecules, 1999,26(3):119-128.
[8] FERRERO F C, PERIOLATTO M C, BURELLI S R, et al. Silk grafting with chitosan and crosslinking agents[J]. Fibers and Polymers, 2010,11(2):185-192.
[9] DAVARPANAH S, MAHMOODI NIYAZ M, ARAMI M, et al. Environmentally friendly surface modification of silk fiber: chitosan grafting and dyeing[J]. Applied Surface Science, 2009(255):4171-4176.
[10] HUANG J W, QIN J Z, ZHANG P, et al. Facile preparation of a strong chitosan-silk biocomposite film[J]. Carbohydrate Polymers, 2020(229):515-523.
[11] LILLO L E, MATSUHIRO B. Chemical modifications of carboxylated chitosan[J]. Carbohydrate Polymers, 1997(34):397-401.
[12] YOO S H, LEE J S, PARK S Y, et al. Effects of selective oxidation of chitosan on physical and biological properties[J]. International Journal of Biological Macromolecules, 2005(35):27-31.
[13] TERADA N, MORIMOTO M, SAIMOTO H, et al. Regioselective synjournal and biological activity of oxidized chitosan[J]. Polymers for Advanced Technologies, 2003(14):40-51.
[14] YANG Y D, ZHOU Y G, CHOU H M, et al. Blood compatibility and mechanical properties of oxidized-chitosan films[J]. Journal of Applied Polymer Science, 2007,106(1):372-377.
[15] BORDENAVE N L, GRELIER S P, COMA V N. Advances on selective C-6 oxidation of chitosan by TEMPO[J]. Biomacromolecules, 2008,9(9):2377-2382.
pmid: 18700797
[16] 许云辉, 钟娇, 杜兆芳, 等. 一种水溶性抗菌单羧基壳聚糖及其制备方法和应用: ZL201510563693.X[P]. 2015-09-07.
XU Yunhui, ZHONG Jiao, DU Zhaofang, et al. Preparation method and application of a water-soluble antibacterial 6-carboxylic chitosan: ZL201510563 693.X [P]. 2015-09-07.
[17] LU Y H, LIN H, CHEN Y Y, et al. Structure and performance of Bombyx mori silk modified with nano-TiO2 and chitosan[J]. Fibers and Polymers, 2007,8(1):1-6.
[18] YAMAMOTO O M. Influence of particle size on the antibacterial activity of zinc oxide[J]. International Journal of Inorganic Materials, 2001,3(7):643-646.
[19] XU Y H, QIU C, ZHANG X L, et al. Crosslinking chitosan into H3PO4/HNO3-NANO2 oxidized cellulose fabrics as antibacterial-finished material[J]. Carbohydrate Polymers, 2014(112):186-194.
[20] DE NOOY A E J, BESEMER A C. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution: kinetics and mechanism[J]. Tetrahedron, 1995,51(29):8023-8032.
[21] ARAI T, FREDDI G, INNOCENTI R, et al. Acylation of silk and wool with acid anhydrides and preparation of water-repellent fibers[J]. Journal of Applied Polymer Science, 2001,82(11):2832-2841.
[22] FEUGANG J M, KONARSKI P, ZOU D, et al. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits[J]. Frontiers in Bioscience, 2006,11(2):2574-2589.
[1] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[2] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[3] 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85.
[4] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[5] 王浩, 杜兆芳, 许云辉. 氧化壳聚糖/丝胶复合物的制备及其对棉织物的功能整理[J]. 纺织学报, 2019, 40(11): 119-124.
[6] 江华, 张志恒, 蔡金芳, 陈维国, 崔志华, 孙岩峰. 芳伯胺染料对蚕丝织物的重氮化-偶合染色及工艺调控[J]. 纺织学报, 2019, 40(11): 100-105.
[7] 叶嘉浩, 王莉莉, 吴明华, 郭文登, 汪可豪, 陈妮. 蚕丝织物同花同色双面数码喷墨印花上浆工艺[J]. 纺织学报, 2019, 40(10): 92-97.
[8] 关晋平, 匡小慧, 唐人成, 陈国强. 氯化铁对多巴胺改性蚕丝织物的功能整理[J]. 纺织学报, 2019, 40(02): 130-134.
[9] 姚强, 郭静, 吴静. 化学交联改性海藻酸钠/磷虾蛋白复合纤维的制备[J]. 纺织学报, 2019, 40(02): 8-13.
[10] 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88.
[11] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[12] 陈云博 陈国强 邢铁玲. 磷酸硼掺杂硅溶胶对蚕丝织物的阻燃整理[J]. 纺织学报, 2017, 38(08): 96-101.
[13] 刘慧 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016, 37(07): 104-108.
[14] 王紫颖 沈一峰 杨雷 郭云. 乙烯基磷氮类阻燃剂在蚕丝织物上的应用[J]. 纺织学报, 2015, 36(07): 77-82.
[15] 路艳华 卢声 于志财. 青黛与姜黄对柞蚕丝织物的套染[J]. 纺织学报, 2013, 34(9): 73-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!