纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 67-73.doi: 10.13475/j.fzxb.20190902007

• 纺织工程 • 上一篇    下一篇

三维四向和五向编织复合材料冲击断裂行为的多尺度模拟

封端佩1,2, 商元元3, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学),上海 200051
    3.青岛科技大学 高分子科学与工程学院, 山东 青岛 266042
  • 收稿日期:2019-09-05 修回日期:2020-07-07 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 李俊
  • 作者简介:封端佩(1996—),女,硕士生。主要研究方向为服装舒适性及产品开发。

Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites

FENG Duanpei1,2, SHANG Yuanyuan3, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology (Donghua University), Ministry of Education, Shanghai 200051, China
    3. College of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
  • Received:2019-09-05 Revised:2020-07-07 Online:2020-10-15 Published:2020-10-27
  • Contact: LI Jun

摘要:

为对三维编织复合材料的结构特性进行模拟预测分析,采用一种多尺度和细观结构结合的方法,建立三维编织复合材料的等效拼接组合模型,进一步揭示编织复合材料在微观结构水平下的冲击损伤演化、裂纹扩展和能量吸收。设计制备三维四向和三维五向2种编织结构的碳/环氧树脂三维编织复合材料,根据编织参数建立等效拼接组合模型;通过落锤式冲击试验仪结合高速摄影系统记录2种编织复合材料在低速冲击下的断裂行为,与等效拼接组合模型在有限元数值模拟结果相对比,验证等效拼接组合模型的有效性。模拟结果表明,相同的体积分数下轴纱表现出最高的能量吸收,由于轴纱的存在,三维五向编织复合材料的抗裂性和裂纹扩展性优于三维四向编织复合材料。

关键词: 三维编织复合材料, 模型构建, 冲击断裂行为, 比能量吸收, 有限元分析

Abstract:

In order to simulate and predict the complex mechanical characteristics of 3-D braided composites against impact, a multi-scale meso-structure method was used to establish an equivalent combination model of 3-D braided composites to study impact behavior of braided composites. Impact damage evolution, crack propagation and energy absorption were examined numerically. 4- and 5-directional 3-D braided structures were used to prepare braided composites, and the equivalent combination model was established according to the obtained braid parameters. A drop weight impact tester equipped with a high-speed camera was used to record the fracture behavior of the 4-directional 3-D and 5-directional 3-D braided composites under low-speed impact. The 3-D braided composite equivalent combination models were validated by the fracture behavior obtained from the experiments. The simulation results show that under the same volume fraction, the axial yarn exhibits the highest energy absorption. Due to the presence of axial yarns, the 5-directional 3-D braided composites have better crack resistance and crack propagation than the 4-directional 3-D braided composites.

Key words: 3-D braided composite, model construction, impact fracture behavior, specific energy absorption, finite element analysis

中图分类号: 

  • TB332

图1

预制裂纹的冲击试样制备"

表1

复合材料冲击试样规格参数"

纤维类型 结构 编织角
φ/(°)
纤维体积
分数Vf/%
试样尺寸
(L×W×H)/mm
T700-12K 三维四向 25.97 36.77 70×14×7
三维五向 23.84 32.19 70×14×7

图2

纱线分层图解 注:a—三维编织复合材料的横截面SEM照片(×50);b—单根纤维和树脂基体的SEM照片;c—纱线的微观尺度单胞。"

图3

编织复合材料多尺度模型 a—三维四向编织复合材料的中尺度单胞模型;b—三维五向编织复合材料的中尺度单胞模型;c—编织预制件的结构;d—编织复合材料的宏观模型。"

表2

中尺度单胞模型的刚度参数"

结构 类型 Ez/
GPa
Ey/
GPa
Ex/
GPa
νxx νy νz Gxz/
GPa
Gyz/
GPa
Gxy/
GPa
三维四向
内单胞 24.86 4.73 4.73 0.36 0.36 0.43 8.38 8.38 5.80
面单胞 11.94 3.90 3.94 0.44 0.37 0.39 1.74 1.94 1.32
内单胞 34.18 4.51 4.51 0.33 0.33 0.40 6.53 6.53 3.82
三维五向
面单胞 11.60 3.58 3.67 0.43 0.36 0.38 1.76 1.66 1.25

图4

等效拼接组合模型示意图"

图5

冲击断裂实验有限元模型"

图6

冲击断裂实验载荷-位移曲线及裂纹扩展过程"

图7

通过实验和有限元模拟得到的编织复合材料在冲击断裂实验下的荷载-位移曲线"

图8

2种编织结构复合材料的应力分布对比"

图9

复合材料的能量对比 注:1—三维五向实验结果;2—三维五向有限元模拟结果;3—三维四向实验结果;4—三维四向有限元模拟结果。"

[1] 马丕波, 蒋高明, 高哲, 等. 纺织结构复合材料冲击拉伸研究进展[J]. 力学进展, 2013,43(3):329-357.
doi: 10.6052/1000-0992-13-008
MA Pibo, JIANG Gaoming, GAO Zhe, et al. Advances in impact tensile properties of 3-D textile structural composites[J]. Advances in Mechanics, 2013,43(3):329-357.
doi: 10.6052/1000-0992-13-008
[2] 顾伯洪, 孙宝忠. 纺织结构复合材料冲击动力学[M]. 北京: 科学出版社, 2012: 1-39.
GU Bohong, SUN Baozhong. Impact dynamics of textile structural composites [M]. Beijing: Science Press, 2012: 1-39.
[3] 刘丽敏, 孙颖, 李涛涛, 等. 芳纶/炭混编三维编织复合材料冲击后压缩性能实验研究[J]. 固体火箭技术, 2016,39(6):803-808.
LIU Limin, SUN Ying, LI Taotao, et al. Experimental investigation on the compression properties of Kevlar/carbon hybrid 3D braided composites after impact[J]. Journal of Solid Rocket Technology, 2016,39(6):803-808.
[4] 涂莉, 孟家光. 三维纺织复合材料研究进展[J]. 上海纺织科技, 2019,47(6):4-7,24.
TU Li, MENG Jiaguang. Research progress of three-dimensional textile composites[J]. Shanghai Textile Science and Technology, 2019,47(6):4-7,24.
[5] 宋云飞, 杜宇. 三维编织复合材料力学性能研究现状[J]. 玻璃钢/复合材料, 2017(10):104-109.
SONG Yunfei, DU Yu. Research status of mechanical properties of 3D braided composite[J]. Fiber Reinforced Plastics/Composites, 2017(10):104-109.
[6] 张强. 三维角联锁机织复合材料低速冲击力学性能及有限元分析[D]. 上海:东华大学, 2012: 21-55.
ZHANG Qiang. FEM stimulation of three-dimensional angel interlock woven composite under low-velocity impact[D]. Shanghai:Donghua University, 2012: 21-55.
[7] JAJAM K C, TIPPUR H V. Quasi-static and dynamic fracture behavior of particulate polymer composites: a study of nano-vs. micro-size filler and loading-rate effects[J]. Composites Part B:Engineering, 2012,43(8):3467-3481.
doi: 10.1016/j.compositesb.2012.01.042
[8] ZHANG C, CURIEL-SOSA J L, BUI T Q. A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites[J]. Composite Structures, 2017,163:32-43.
doi: 10.1016/j.compstruct.2016.12.042
[9] DONG K, ZHANG J, JIN L, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures, 2016,143:9-22.
doi: 10.1016/j.compstruct.2016.02.029
[10] GE J, HE C, LIANG J, et al. A coupled elastic-plastic damage model for the mechanical behavior of three-dimensional (3D) braided composites[J]. Composites Science and Technology, 2018,157:86-98.
doi: 10.1016/j.compscitech.2018.01.027
[11] TIAN Z, YAN Y, LI J, et al. Progressive damage and failure analysis of three-dimensional braided composites subjected to biaxial tension and compression[J]. Composite Structures, 2018,185:496-507
doi: 10.1016/j.compstruct.2017.11.041
[12] SHI B, LIU S, SIDDIQUE A, et al. Impact fracture behaviors of three-dimensional braided composite U-notch beam subjected to three-point bending[J]. International Journal of Damage Mechanics, 2018,28(3):404-26.
doi: 10.1177/1056789518772619
[13] ZHANG F, WAN Y, GU B, et al. Impact compressive behavior and failure modes of four-step three-dimensional braided composites-based meso-structure model[J]. International Journal of Damage Mechanics, 2014,24(6):805-827.
doi: 10.1177/1056789514554921
[14] PAN Z X, GU , SUN B Z. Numerical analysis of thermo-mechanical behaviors of 3-D rectangular braided composite under different temperatures[J]. Journal of the Textile Institute, 2015,106(2):173-186
doi: 10.1080/00405000.2014.906941
[15] WU L W, ZHANG F, SUN B Z, et al. Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level[J]. International Journal of Mechanical Sciences, 2014,84:41-53.
doi: 10.1016/j.ijmecsci.2014.03.036
[16] ZHOU H, HU D, ZHANG W, et al. The transverse impact responses of 3-D braided composite I-beam[J]. Composites Part A Applied Science and Manufactu-ring, 2017,94:158-169.
[17] WANG C, ROY A, CHEN Z, et al. Braided textile composites for sports protection: energy absorption and delamination in impact modelling[J]. Materials & De-sign, 2017,136:258-69.
[18] WANG R, ZHANG L, HU D, et al. Progressive damage simulation in 3D four-directional braided composites considering the jamming-action-induced yarn deformation. Composite Structure[J]. 2017,178:330-340.
[19] 殷冬冬, 车玉秋, 李妍缘. 三维编织方法现状分析[J]. 科技风, 2018(1):109.
YIN Dongdong, CHE Yuqiu, LI Yanyuan. Analysis of the current situation of three-dimensional weaving method[J]. Technology Wind, 2018 (1):109.
[20] 李柏松, 王继辉, 邓京兰. 真空辅助RTM成型技术的研究[J]. 玻璃钢/复合材料, 2001(1):17-18,23.
LI Bosong, WANG Jihui, DENG Jinglan. The research of vacuum assisted RTM forming technology[J]. Fiber Reinforced Plastics/Composites, 2001(1):17-18,23.
[1] 武鲜艳, 申屠宝卿, 马倩, 金利民, 张威, 谢胜. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(08): 32-38.
[2] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[3] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[4] 刘军, 刘奎, 宁博, 孙宝忠, 张威. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62.
[5] 张燕南, 周伟, 商雅静, 赵文政. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(08): 55-63.
[6] 贾树生 万振凯 杨连贺 张恒杰. 碳纳米线的拉伸应变传感特性[J]. 纺织学报, 2018, 39(03): 14-18.
[7] 贾树生 杨连贺 白会肖 万振凯 . 嵌入三维编织复合材料的碳纳米线应变传感特性[J]. 纺织学报, 2018, 39(01): 11-18.
[8] 马倩 王可 金利民. 三维角联锁机织复合材料的冲击破坏有限元模拟分析[J]. 纺织学报, 2017, 38(07): 63-68.
[9] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[10] 李冠志 赵强 汪军 Gong Hugh . 纱线截面压缩变形仿真与验证[J]. 纺织学报, 2017, 38(02): 184-190.
[11] 万莉 郭建民 马永军. 三维编织复合材料弯曲承载下嵌入碳纳米线的特性分析[J]. 纺织学报, 2016, 37(01): 57-63.
[12] 万振凯 贾敏瑞. 基于磁通图像的平板三维编织复合材料试件内部缺陷检测[J]. 纺织学报, 2015, 36(08): 49-55.
[13] 杜梅 王春霞 董凯 金利民. 基于有限元的芯村增强材料抗冲击性能分析[J]. 纺织学报, 2015, 36(08): 62-67.
[14] 陈威亚 刘延波 王洋知 沈烨伟 郭岭岭. 多针头静电纺丝过程中电场强度与分布的有限元分析[J]. 纺织学报, 2014, 35(6): 1-0.
[15] 杜梅 王春霞 金利民. 施载方式对单向复合材料抗拉性能影响的有限元分析[J]. 纺织学报, 2014, 35(10): 55-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!