纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 14-19.doi: 10.13475/j.fzxb.20190902506

• 纤维材料 • 上一篇    下一篇

一锅法合成氨基化纳米纤维素及其性能表征

卢琳娜1,2, 李永贵1,2, 卢麒麟1,2()   

  1. 1.福建省新型功能性纺织纤维及材料重点实验室(闽江学院), 福建 福州 350108
    2.闽江学院 服装与艺术工程学院, 福建 福州 350108
  • 收稿日期:2019-09-06 修回日期:2020-07-12 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 卢麒麟
  • 作者简介:卢琳娜(1993—),女,实验师,硕士。主要研究方向为功能性生物质纤维材料。
  • 基金资助:
    福州市科技计划项目(2019-S-63);闽江学院引进人才项目(MJY18010);国家林业和草原局植物纤维功能材料重点实验室开放基金项目(2019KFJJ01);闽江学院校级科研项目(MYK19009);闽江学院创新创业创造教育专项课题(YB009)

One-pot synthesis and characterization of aminated cellulose nanocrystals

LU Linna1,2, LI Yonggui1,2, LU Qilin1,2()   

  1. 1. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    2. Clothing and Design Faculty, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2019-09-06 Revised:2020-07-12 Online:2020-10-15 Published:2020-10-27
  • Contact: LU Qilin

摘要:

为实现纳米纤维素衍生物的绿色高效制备,以过硫酸铵为氧化剂,基于机械力化学作用,在微波-水热条件下氧化降解竹浆粕得到羧基化纳米纤维素(CNC),然后与二乙烯三胺发生缩合反应,实现水相中氨基化纳米纤维素(ACNC)的一锅法合成,并对其性能进行研究。结果表明:ACNC呈棒状,直径为10~40 nm,长度为50~300 nm, 氨基的接枝率为6.29%;ACNC的晶型并未发生改变,仍为纤维素Ⅰ型,结晶度由竹浆粕的59%增加到79%;ACNC的热稳定性较竹浆粕并未显著下降,但较CNC显著提高,说明CNC表面接枝氨基后热稳定性能得到改善;该制备方法绿色高效,得到的纤维素衍生物有望在生物固化和物理性能增强方面发挥作用。

关键词: 氨基化纳米纤维素, 机械力化学法, 过硫酸铵, 微波-水热法, 一锅法

Abstract:

In order to realize green preparation of nanocellulose derivatives, ammonium persulfate was used to oxidize bamboo pulp fibers to obtain carboxylated nanocellulose (CNC) under microwave-hydrothermal condition based on mechanical force chemistry. Then condensation reaction between CNC and diethylenetriamine was carried out in the aqueous phase to realize the one-pot synthesis of aminated nanocellulose (ACNC), and its properties were explored. The results show that ACNC is rod-shaped with a diameter of 10-40 nm and a length of 50-300 nm, and the grafting ratio of ACNC is 6.29%. The crystal form of ACNC is still cellulose type I, besides the crystallinity increases from 59% to 79%. The thermal stability of ACNC is not significantly lower than that of bamboo fiber, but it is significantly higher than that of CNC, indicating that the thermal stability of CNC is improved after grafting amino groups. The preparation method is green and efficient, and the obtained cellulose derivatives are expected to play a role in the field of biosolidification and physical property enhancement.

Key words: aminated cellulose nanocrystal, mechanochemistry, ammonium persulfate, microwave-hydrothermal, one-pot

中图分类号: 

  • TS131.9

图1

羧基纳米纤维素的胺化反应"

图2

竹浆粕、CNC和ACNC的红外光谱图"

图3

纤维素的结构"

图4

竹浆粕、CNC和ACNC的13C NMR谱图"

表1

CNC和ACNC的元素含量"

样品名称 N C H
CNC 0.09 42.45 6.48
ACNC 1.84 42.78 6.65

图5

CNC和ACNC的透射电镜照片"

图6

竹浆粕、CNC和ACNC的X射线衍射图谱"

图7

竹浆粕、CNC和ACNC的TG和DTG曲线"

表2

竹浆粕、CNC和ACNC的热力学性能参数"

样品
名称
初始分解
温度/℃
最大质量损
失速率/℃
质量损
失率/%
竹浆粕 338.8 364.2 89.5
CNC 256.5 325.8 64.2
ACNC 310.9 342.2 66.1
[1] HAIDER T P, VOLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019,58(1):50-62.
doi: 10.1002/anie.201805766 pmid: 29972726
[2] POLKO J K, KIEBER J J. The regulation of cellulose biosynjournal in plants[J]. The Plant Cell, 2019,31(2):282-296.
doi: 10.1105/tpc.18.00760 pmid: 30647077
[3] JIN H, ALAIN D, NING L. Nanocellulose: from fundamentals to advanced materials[M]. John Wiley & Sons, 2019: 21-52.
[4] REDDY M M, VIVEKANANDHAN S, MISRA M, et al. Biobased plastics and bionanocomposites: current status and future opportunities[J]. Progress in Polymer Science, 2013,38(10/11):1653-1689.
doi: 10.1016/j.progpolymsci.2013.05.006
[5] MARIANO M, EI K N, DUFRESNE A. Cellulose nanocrystals and related nanocomposites: review of some properties and challenges[J]. Journal of Polymer Science Part B: Polymer Physics, 2014,52(12):791-806.
doi: 10.1002/polb.23490
[6] 陈觉声, 刘淑贞, 刘雄. 微细化纤维素改性技术研究进展[J]. 食品工业科技, 2012,33(19):382-386.
CHEN Juesheng, LIU Shuzhen, LIU Xiong. Research progress in micronized cellulose modification techno-logy[J]. Science and Technology of Food Industry, 2012,33(19):382-386.
[7] HOKKANEN S, REPO E, SUOPAJÄRVI T, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014,21(3):1471-1487.
doi: 10.1007/s10570-014-0240-4
[8] MARYAM G, FEDERICO C, PERTOMAS L, et al. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials[J]. Biomacromolecules, 2015,16(10):3399-410.
doi: 10.1021/acs.biomac.5b01117 pmid: 26402379
[9] 李维功. 纳米微晶纤维素的氨基化改性及其吸附性能研究[D]. 济南:齐鲁工业大学, 2015: 8-10.
LI Weigong. Amino-functionalization of nanocrystalline cellulose and its absorption behavior[D]. Jinan:Qilu University of Technology, 2015: 8-10.
[10] 陈金伟, 商士斌, 沈明贵, 等. 端氨基纳米纤维素的制备及对Pb(Ⅱ)的吸附性能研究[J]. 林产化学与工业, 2018,38(6):15-23.
CHEN Jinwei, SHANG Shibin, SHEN Minggui, et al. Preparation of amino acidterminated nanocellulose and adsorp-tion properties of Pb(Ⅱ)[J]. Chemistry and Industry of Forest Products, 2018,38(6):15-23.
[11] 季美秀, 张洋, 张天蒙, 等. 氨基化纳米纤维素改性无醛装饰纸的制备及性能[J]. 东北林业大学学报, 2020,48(2):93-97.
JI Meixiu, ZHANG Yang, ZHANG Tianmeng. Preparation and properties of aminated nanocellulose modified aldehyde decorative paper[J]. Journal of Northeast Foresrty University, 2020,48(2):93-97.
[12] 王香梅, 谢龙, 宋海龙. 水性引发剂浓度对MMA/n-BA/H-PDMS微乳液聚合的影响[J]. 高分子材料科学与工程, 2017,33(1):7-11.
WANG Xiangmei, XIE Long, SONG Hailong. Effects of water-soluble initiator concentration on the microemulsion polymerization of MMA/n-BA/H-PDMS[J]. Polymer Materials Science & Engineering, 2017,33(1):7-11.
[13] FUJII S, MATSUZAWA S, NAKAMURA Y. One-pot synjournal of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant[J]. Chemical Communications, 2010,46(38):7217-7219.
doi: 10.1039/c0cc02005b pmid: 20820522
[14] BEYER M K, CLAUSEN-SCHAUMANN H. Mechanochemistry: the mechanical activation of covalent bonds[J]. Chemical Reviews, 2005,105(8):2921-2948.
doi: 10.1021/cr030697h pmid: 16092823
[15] LIAO Z, HUANG Z, HU H, et al. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation[J]. Bioresource Technology, 2011,102(17):7953-7958.
doi: 10.1016/j.biortech.2011.05.067
[16] HUANG P, WU M, KUGA S, et al. Aqueous pretreatment for reactive ball milling of cellulose[J]. Cellulose, 2013,20(4):2175-2178.
doi: 10.1007/s10570-013-9940-4
[17] 宁春花, 徐冬梅, 张可达. 一种新型环氧树脂固化剂的合成[J]. 中国胶粘剂, 2005,14(2):41-43.
NING Chunhua, XU Dongmei, ZHANG Keda. Synjournal of a new type curing agent of epoxy resin[J]. China Adhesives, 2005,14(2):41-43.
[18] 李治明, 荣荣, 尹学琼, 等. 细菌纤维素制备及吸附金属离子的研究进展[J]. 精细化工, 2018,35(5):721-727.
LI Zhiming, RONG Rong, YIN Xueqiong, et al. Research progress of preparation of bacterial cellulose and its adsorption for metal ions[J]. Fine Chemicals, 2018,35(5):721-727.
[19] MAHFOUDHI N, BOUFI S. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review[J]. Cellulose, 2017,24(3):1171-1197.
doi: 10.1007/s10570-017-1194-0
[20] 胡阳. 过硫酸盐体系制备羧基化纳米纤维素及其衍生物的研究[D]. 福州:福建农林大学, 2014: 34-43.
HU Yang. Manufacture of carboxylated cellulose nanocrystals by persulfate and its derivatives[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 34-43.
[21] FOLLAIN N, MONTANARI S, JEACOMINE I, et al. Coupling of amines with polyglucuronic acid: evidence for amide bond formation[J]. Carbohydrate Polymers, 2008,74(3):333-343.
doi: 10.1016/j.carbpol.2008.02.016
[22] JOHNSON R K. TEMPO-oxidized nanocelluloses: Surface modification and use as additives in cellulosic nanocomposites[D]. Blacksburg: The Virginia Polytechnic Institute & State University, 2010: 1-50.
[23] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794.
doi: 10.1177/004051755902901003
[24] HEISKANEN I, BACKFOLK K, VEHVILAINEN M, et al. Process for producing microfibrillated cellulose: US 13/382706[P]. 2010-07-02.
[25] HASANI M, CRANSTON E D, WESTMAN G, et al. Cationic surface functionalization of cellulose nanocrystals[J]. Soft Matter, 2008,4(11):2238-2244.
doi: 10.1039/B806789A
[26] LU P, HSIEH Y. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010,82(2):329-336.
doi: 10.1016/j.carbpol.2010.04.073
[27] LI B, XU W, KRONLUND D, et al. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation[J]. Carbohydrate Polymers, 2015,133(133):605-612.
doi: 10.1016/j.carbpol.2015.07.033
[28] JI H, XIANG Z, QI H, et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid[J]. Green Chemistry, 2019,21(8):1956-1964.
doi: 10.1039/C8GC03493A
[29] MEYABADI T F, DADASHIAN F, SADEGHI G M, et al. Spherical cellulose nanoparticles preparation from waste cotton using a green method[J]. Powder Technology, 2014,261:232-240.
doi: 10.1016/j.powtec.2014.04.039
[30] RANBY B G. Fibrous macromolecular systems. Cellulose and muscle. the colloidal properties of cellulose mice-lles[J]. Discussions of the Faraday Society, 1951,11:158-164.
doi: 10.1039/DF9511100158
[1] 余志才, 钟跃崎, GONGRHugh, 谢昊洋, HUSSAINAzmat. 基于三维悬垂模型和织物面密度的织物匹配[J]. 纺织学报, 2020, 41(10): 46-51.
[2] 狄岚, 杨达, 梁久祯, 马明寅. 基于图元分割与Gabor滤波的织物瑕疵检测方法[J]. 纺织学报, 2020, 41(09): 59-66.
[3] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[4] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[5] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176.
[6] 朱士凤 曲丽君 田明伟 施楣梧. 涤纶织物的氧化石墨烯功能整理及其防熔滴性能[J]. 纺织学报, 2017, 38(02): 141-145.
[7] 陶建勤 余晓华 张宏伟 刘娜. 毛纱捻缩率的预测模型[J]. 纺织学报, 2016, 37(05): 32-36.
[8] 陈明艳 赵芹. 现代男西服风格演变及工艺特点[J]. 纺织学报, 2015, 36(10): 120-127.
[9] 蒋约林 吴金丹 何驹 葛华云 王际平. 氨基硅油整理法在温敏纺织品制备中的应用[J]. 纺织学报, 2015, 36(02): 86-91.
[10] 陶建勤 张宏伟 陈锡勇 刘娜 张祥富. 以品质指数为导向的精梳纯毛纱条干质量控制[J]. 纺织学报, 2014, 35(11): 28-0.
[11] 龚小舟 郭依伦 吴中伟 高虹 姜联栋 陈晓钢. 经编间隔织物多层复合材料的防刺性能[J]. 纺织学报, 2014, 35(5): 55-0.
[12] 孙玉山 徐纪刚 李昭锐 程春祖 张均 李晓俊. 新溶剂法纤维素纤维开发概况与展望[J]. 纺织学报, 2014, 35(2): 126-0.
[13] 吕丽华 刘桂彬 孙艳丽. 阻燃型玄武岩织物/聚乳酸复合材料的研制[J]. 纺织学报, 2013, 34(1): 20-24.
[14] 朱士凤, 施楣梧. 热塑性纤维防熔滴研究的现状和发展趋势[J]. 纺织学报, 2012, 33(6): 121-124.
[15] 张长欢, 陈丽华. 纺织品pH值不同检测标准间差异及检测结果相关性分析[J]. 纺织学报, 2012, 33(5): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!