纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 54-58.doi: 10.13475/j.fzxb.20190903505
金耀1,2, 蔡腾皓1, 李彩曼1, 胡雅丽3, 鲁佳亮4, 王怡5()
JIN Yao1,2, CAI Tenghao1, LI Caiman1, HU Yali3, LU Jialiang4, WANG Yi5()
摘要:
为丰富织物组织的表达形式,扩充传统织物组织的设计空间,引入数学与艺术交叉领域中的铺砌思想,从构造织物组织空间布局的角度提出一种基于椅子铺砌的织物组织设计方法。首先基于扩充—再分过程的替换法,运用空间四叉树生成多层次椅子铺砌,形成织物组织的空间布局结构,然后依据该结构将用户设计的铺砌块组织单元运用几何对称变换进行填充,从而形成椅子铺砌组织。运用C++编程语言实现了核算法并进行仿真实验。结果表明:采用椅子铺砌方法设计织物组织过程简单,所生成的组织不仅具有自相似性、层次嵌套等类似分形组织的特点,同时又具有局部对称、乱中有序等传统组织所不具有的新特点,能起到一定的防伪作用,为织物组织的数字化设计探索了新途径。
中图分类号:
[1] | KAPLAN Craig S. Introductory tiling theory for computer graphics[J]. Synjournal Lectures on Computer Graphics and Animation, 2009,4(1):113. |
[2] |
LU Peter J, STEINHARDT Paul J. Decagonal and quasi-crystalline tilings in medieval Islamic architec-ture[J]. Science, 2007,315(5815):1106-1110.
pmid: 17322056 |
[3] | CHUNG K W, CHAN H S Y, WANG B N. Automatic generation of nonperiodic patterns from dynamical systems[J]. Chaos, Solitons and Fractals, 2004,19(5):1177-1187. |
[4] |
OUYANG Peichang, FATHAUER Robert W. Beautiful math:part 2: aesthetic patterns based on fractal tilings[J]. IEEE Computer Graphics and Applications, 2014,34(1):68-76.
doi: 10.1109/MCG.2014.6 pmid: 24808170 |
[5] |
JOSÉ Ezequiel Soto Sánchez, ASLA Medeiros e Sá, LUIZ Henrique de Figueiredo. Acquiring periodic tilings of regular polygons from images[J]. The Visual Computer, 2019,35:899-907.
doi: 10.1007/s00371-019-01665-y |
[6] | 邹玉茹, 李文侠, 鲁坚. Chair Tilings非周期艺术图案的生成[J]. 计算机辅助设计与图形学学报, 2006,18(4):498-501. |
ZOU Yuru, LI Wenxia, LU Jian. Generation of Chair Tilings aperiodic aesthetic patterns[J]. Journal of Computer-aided Design & Computer Graphics, 2006,18(4):498-501. | |
[7] | HANN M A. Structure and form in textile design: curriculum and bibliography[J]. Journal of The Textile Institute, 2018,109(3):285-293 |
[8] | 施国生, 胡觉亮. 对称性原理在织物组织设计中的应用[J]. 浙江工程学院学报, 2000,17(3):155-157. |
SHI Guosheng, HU Jueliang. Application of symmetry principle in fabric weave design[J]. Journal of Zhejiang Institute of Science and Technology, 2000,17(3):155-157. | |
[9] | 赵良臣, 闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003,24(6):33-34. |
ZHAO Liangchen, WEN Tao. Mathematical principle of rotating weave design[J]. Journal of Textile Research, 2003,24(6):33-34. | |
[10] | 施国生, 张瑜秋, 熊超. 图像变换在多臂织物组织设计上的应用[J]. 纺织学报, 2006,27(7):23-26. |
SHI Guosheng, ZHANG Yuqiu, XIONG Chao. Application of image transformation technique on dobby fabric weave design[J]. Journal of Textile Research, 2006,27(7):23-26. | |
[11] | 张聿, 金耀, 孙家武, 等. 基于 L 系统的织物分形组织设计方法[J]. 纺织学报, 2007,28(5):51-54. |
ZHANG Yu, JIN Yao, SUN Jiawu, et al. Design method of fabric fractal weave based on L-system[J]. Journal of Textile Research, 2007,28(5):51-54. | |
[12] | 张聿, 金耀, 岑科军. 基于 IFS 的非规则分形组织设计方法[J]. 纺织学报, 2012,33(12):30-34. |
ZHANG Yu, JIN Yao, CEN Kejun. Method of designing irregular fractal weave based on IFS[J]. Journal of Textile Research, 2012,33(12):30-34. | |
[13] | 马铃琳, 张聿. 各层基础组织互异的分形组织设计方法[J]. 丝绸, 2013,50(9):45-49. |
MA Linglin, ZHANG Yu. Design method of fractal weave with diverse basic weaves in different layers[J]. Journal of Silk, 2013,50(9):45-49. | |
[14] | 章平, 张聿. 同层仿射分形织物的设计方法[J]. 丝绸, 2014,51(12):35-38. |
ZHANG Ping, ZHANG Yu. Design method of fractal fabrics of affinity in the same layer[J]. Journal of Silk, 2014,51(12):35-38. | |
[15] | 熊丽丽, 张聿. 基于斜纹基本组织的回纹分形组织设计方法[J]. 丝绸, 2015,52(1):31-34. |
XIONG Lili, ZHANG Yu. Design method of fret fractal weave based on twill weave[J]. Journal of Silk, 2015,52(1):31-34. | |
[16] | 熊宇龙, 张华熊, 鲁佳亮, 等. 基于扩展分形模型的织物组织设计方法[J]. 浙江理工大学学报, 2018,39(3):341-345. |
XIONG Yulong, ZHANG Huaxiong, LU Jialiang, et al. Fabric-weave design method based on extended fractal model[J]. Journal of Zhejiang Sci-Tech University, 2018,39(3):341-345. | |
[17] | 金耀, 张聿. 织物组织的群表达方法[J]. 纺织学报, 2010,31(6):48-51. |
JIN Yao, ZHANG Yu. Studies on fabric weave representation by group theory[J]. Journal of Textile Research, 2010,31(6):48-51. |
[1] | 汝欣 彭来湖 胡旭东 史伟民 宋赛赛 . 长毛绒纬编针织物编织效果预测及其数字化设计[J]. 纺织学报, 2018, 39(10): 63-67. |
[2] | 赵良臣;闻涛. 织物组织设计中的综合和分解算法[J]. 纺织学报, 2003, 24(05): 83-85. |
|