纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 109-116.doi: 10.13475/j.fzxb.20190903908

• 染整与化学品 • 上一篇    下一篇

磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用

赵芷芪1,2, 李秋瑾1,2, 孙月静1,2, 巩继贤1,2, 李政1,2, 张健飞1,2,3()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.山东省生态纺织协同创新中心, 山东 青岛 266071
  • 收稿日期:2019-09-12 修回日期:2020-03-23 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 张健飞
  • 作者简介:赵芷芪(1990—),女,博士生。主要研究方向为纳米材料与功能纺织材料。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309800);国家重点研发计划资助项目(2016YFC0400503-02);天津自然科学基金项目(18JCYBJC89600);天津市应用基础及前沿技术研究计划(15JCYBJC18000);新疆维吾尔自治区重大科技专项(2016A03006-3);中国纺织工业联合会科技指导性项目(2017011)

Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes

ZHAO Zhiqi1,2, LI Qiujin1,2, SUN Yuejing1,2, GONG Jixian1,2, LI Zheng1,2, ZHANG Jianfei1,2,3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, Shandong 266071, China
  • Received:2019-09-12 Revised:2020-03-23 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Jianfei

摘要:

针对染整过程中产生的废水量较大,对环境造成污染的问题,通过层层自组装(LBL)的方法,利用带有相反电荷的四氧化三铁-氧化石墨烯(Fe3O4-GO)和聚丙烯胺盐酸盐(PAH)制备磁性微胶囊,用于染色废水的吸附研究。分析了Fe3O4-GO及(PAH/Fe3O4-GO)n微胶囊的形貌与化学结构。考察了(PAH/Fe3O4-GO)2微胶囊对阳离子染料亚甲基蓝的吸附行为及吸附机制。结果表明:当染料的质量浓度为0.2~3.0 mg/mL时,(PAH/Fe3O4-GO)2微胶囊对染料的吸附在20 min内可达到最大吸附量;在25 ℃,pH=12条件下,(PAH/Fe3O4-GO)2对染料的吸附率可达96.5%;Langmuir吸附等温线模型和准二级动力学模型能更好地描述(PAH/Fe3O4-GO)2微胶囊对亚甲基蓝的吸附过程,计算得到理论最大吸附量为219.996 mg/g。

关键词: 氧化石墨烯, 磁性微胶囊, 印染废水, 亚甲基蓝, 吸附性能

Abstract:

Facing the problem that printing and dyeing wastewater pollutes environment, this paper reports on hybrid magnetic microcapsules with Fe3O4-graphene oxide (Fe3O4-GO) and poly(allylamine hydrochloride) (PAH) for purifying and cleaning the wastewater during dyeing processes. These microcapsules were made through layer-by-layer (LBL) self-assembly due to the opposite charges of Fe3O4-GO and PAH. The structure and morphology of Fe3O4-GO and (PAH/Fe3O4-GO)n were characterized. Cationic methylene blue was then used to study the adsorption behaviour and mechanism of magnetic microcapsules. When methylene blue dye (0.2-3.0 mg/mL) was absorbed for 20 minutes by microcapsules, the adsorption reached maximum. Moreover, the absorption reaches maximum value at pH of 12 with an adsorption rate of 96.5%. The pseudo-second-order adsorption kinetic and Langmuir adsorption isothermal model are more suitable for describing the adsorption process of methylene blue on magnetic (PAH/Fe3O4-GO)2 microcapsules, with the theoretical maximum adsorption of 219.996 mg/g.

Key words: graphene oxide, magnetic microcapsules, dyeing wastewater, methylene blue, adsorption

中图分类号: 

  • TS195.5

图1

采用LBL法制备杂化的磁性氧化石墨烯微胶囊"

图2

Fe3O4-GO的形貌照片"

图3

磁性氧化石墨烯微胶囊的超景深三维显微镜图像"

图4

磁性氧化石墨烯微胶囊在外磁场作用下与水的分离"

图5

Fe3O4-GO微粒和(PAH/Fe3O4-GO)n微胶囊的红外光谱图"

图6

吸附剂质量对吸附性能的影响"

图7

不同初始染料质量浓度和时间条件下磁性微胶囊对亚甲基蓝的吸附"

图8

pH值对(PAH/Fe3O4-GO)2微胶囊吸附亚甲基蓝的影响"

图9

(PAH/Fe3O4-GO)2微胶囊对不同质量浓度亚甲基蓝溶液的吸附"

图10

(PAH/Fe3O4-GO)2微胶囊吸附亚甲基蓝的准一级动力学和准二级动力学吸附拟合曲线"

表1

(PAH/Fe3O4-GO)2微胶囊吸附染料的动力学模型参数"

MB质量
浓度/
(mg·mL-1)
吸附量
测量值/
(mg·g-1)
准一级动力学 准二级动力学
Qe/(mg·g-1) k1/min-1 R2 Qe/(mg·g-1) k2/(g·mg-1·min-1) R2
1.0 62.995 8 35.644 2 0.025 3 0.603 4 62.640 2 0.015 9 0.999 9
2.5 86.533 7 51.214 7 0.018 3 0.700 7 86.533 0 0.011 6 0.999 8

图11

(PAH/Fe3O4-GO)2微胶囊吸附亚甲基蓝的Langmuir和Freundlich吸附等温线"

表2

(PAH/Fe3O4-GO)2微胶囊吸附亚甲基蓝的等温线模型参数"

Langmuir模型 Freundlich模型
Qmax/
(mg·g-1)
KL R2 1/n KF R2
219.996 0.422 12 0.958 21 0.849 29 5.126 48 0.947 94

表3

洗脱次数对磁性微胶囊脱附率的影响"

洗脱次数 脱附率/%
1 52
2 53
3 54
4 54
[1] KONG L, GAN X, AHMAD A L B, et al. Design and synjournal of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal[J]. Chemical Engineering Journal, 2012,197:350-358.
doi: 10.1016/j.cej.2012.05.019
[2] 朱士凤, 曲丽君, 田明伟, 等. 涤纶织物的氧化石墨烯功能整理及其防熔滴性能[J]. 纺织学报, 2017,38(2):141-145.
ZHU Shifeng, QU Lijun, TIAN Mingwei, et al. Function finishing and anti-dripping property of polyethylene terephthalate fabric coated with graphene oxide[J]. Journal of Textile Research, 2017,38(2):141-145.
[3] ZHANG M, JIA Y, LI H, et al. A facile method to synjournale reduced graphene oxide /carbon nanotube hybrid fibers as binder-free electrodes for supercapacitors[J]. Synthetic Metals, 2017,232:66-71.
doi: 10.1016/j.synthmet.2017.07.010
[4] 张梅, 贾紫璇, 孙小娟, 等. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018,39(1):1-5.
ZHANG Mei, JIA Zixuan, SUN Xiaojuan, et al. Preparation and properties of wet-spinning graphene fibers[J]. Journal of Textile Research, 2018,39(1):1-5.
[5] THEBO K H, QIAN X, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018,9(1):1486.
doi: 10.1038/s41467-018-03919-0 pmid: 29662053
[6] MIAO X, YUE X, SHEN X, et al. Nitrogen-doped carbon dot-modified Ag3PO4/GO photocatalyst with excellent visible-light-driven photocatalytic performance and mechanism insight[J]. Catalysis Science & Technology, 2018,8(2):632-641.
[7] HSIEH S, TING J. Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials[J]. Applied Surface Science, 2018,427(A):465-475.
[8] LIU G, JIN W, XU N. Graphene-based membranes[J]. Chemical Society Reviews, 2015,44(15):5016-5030.
pmid: 25980986
[9] YEH C N, RAIDONGIA K, SHAO J, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2014,7(2):166-170.
doi: 10.1038/nchem.2145 pmid: 25615671
[10] HILLEWAERE X K D, TEIXEIRA R F A, NGUYEN L T T, et al. Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry[J]. Advanced Functional Materials, 2015,24(35):5575-5583.
[11] CHEN T, SELIG M J, LEE M C, et al. Encapsulation of copigmented anthocyanins within polysaccharide microcapsules built upon removable CaCO3 templates[J]. Food Hydrocolloids, 2018,84:200-209.
[12] 张维, 李秋瑾, 张健飞. 层层组装微胶囊的制备及其缓释性能[J]. 纺织学报, 2015,36(3):58-62.
ZHANG Wei, LI Qiujin, ZHANG Jianfei. Preparation and controlled release of microcapsules via layer-by layer assembly[J]. Journal of Textile Research, 2015,36(3):58-62.
[13] 刘菲, 李秋瑾, 巩继贤, 等. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019,40(2):114-118.
LIU Fei, LI Qiujin, GONG Jixian, et al. Polysaccharide microcapsules via layer-by-layer assembly for cotton fabric as sustained release vessel[J]. Journal of Textile Research, 2019,40(2):114-118.
[14] LUO W, ZHU L, WANG N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable hetero-geneous fenton-like catalyst[J]. Environmental Science & Technology, 2010,44(5):1786.
doi: 10.1021/es903390g pmid: 20131791
[15] CHEN L, HUI N, YU C, et al. Amide pectin: a carrier material for colon-targeted controlled drug release[J]. Journal of Applied Polymer Science, 2016,133(29):43697.
[16] HUIZAR-FELIX A M, CRUZ-SILVA R, BARANDIARAN J M, et al. Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles[J]. Journal of Alloys & Compounds, 2016,678:541-548.
[17] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019,40(10):20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019,40(10):20-25.
[18] 张磊, 郝露, 徐山青. 废旧织物制备活性炭对亚甲基蓝的吸附动力学[J]. 纺织学报, 2016,37(12):76-80.
ZHANG Lei, HAO Lu, XU Shanqing. Adsorption kinetics of waste fabrics based activated carbon to methylene blue[J]. Journal of Textile Research, 2016,37(12):76-80.
doi: 10.1177/004051756703700203
[19] CHEN X, YE N. A graphene oxide surface-molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples[J]. RSC Advances, 2017,7(54):34077-34085.
doi: 10.1039/C7RA02985C
[1] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R 的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[2] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[7] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[8] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[9] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[10] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[11] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[12] 陈冬芝, 杨晓刚, 陈艳霞, 刘琳, 陈彬, 崔科丛, 张勇. 亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能 [J]. 纺织学报, 2020, 41(01): 88-95.
[13] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[14] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[15] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!