纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 149-154.doi: 10.13475/j.fzxb.20191000506
徐绚绚1,2, 巩继贤1,2, 张健飞1,2,3(), 王莉4, 黄景凤4
XU Xuanxuan1,2, GONG Jixian1,2, ZHANG Jianfei1,2,3(), WANG Li4, HUANG Jingfeng4
摘要:
为阐明罗布麻抑菌功能的物质基础,促进罗布麻纤维在医疗保健用纺织品领域的开发和应用,综述了罗布麻韧皮和精干麻纤维中存在的主要抑菌物质,包括:黄酮类化合物、鞣质、甾体及其苷类、香豆素类化合物、酚酸类和苯甲醛类化合物、脂肪酸以及挥发油。分析了各类抑菌物质的化学成分和抑菌活性,并着重从抑制核酸合成、破坏细胞膜、抑制能量代谢、影响脂肪酸合成、抑制运动性、阻断电子传递链、抑制酶活性、减弱营养物质的吸收以及通过过氧化和自氧化形成具有毒性的降解产物等方面介绍了抑菌作用机制。最后针对精干麻纤维抑菌物质的来源问题,指出韧皮中功能性成分在脱胶过程中的演化行为应成为未来研究的一个重要方向。
中图分类号:
[1] | 巩继贤, 张秋亚, 张涛, 等. 韧皮结构对罗布麻生物脱胶的影响[J]. 纺织学报, 2017, 38(12):83-87. |
GONG Jixian, ZHANG Qiuya, ZHANG Tao, et al. Investigation on bio-recalcitrance in biodegumming of Apocynum[J]. Journal of Textile Research, 2017, 38(12):83-87. | |
[2] | LI M, HAN G, CHEN H, et al. Chemical compounds and antimicrobial activity of volatile oils from bast and fibers of Apocynum venetum[J]. Fibers and Polymers, 2012, 13(3):322-328. |
[3] | WANG L, HAN G, ZHANG Y. Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments[J]. Carbohydrate Polymers, 2007, 69(2):391-397. |
[4] | 郑丽莎, 高山, 王仑, 等. 罗布麻纤维抗菌机理研究[J]. 检验检疫学刊, 2009, 19(3):13-16. |
ZHENG Lisha, GAO Shan, WANG Lun, et al. Study on antibacterial mechanism of Apocynum Venetum fiber[J]. Journal of Inspection and Quarantine, 2009, 19(3):13-16. | |
[5] | 李明华. 罗布麻纤维抑菌成分与抑菌性能的研究[D]. 上海: 东华大学, 2011: 53-71. |
LI Minghua. Study on antibacterial components and properties of Apocynum venetum fibers[D]. Shanghai: Donghua University, 2011: 53-71. | |
[6] | 高世会, 郁崇文. 罗布麻中黄酮的超临界CO2萃取及其抗菌性[J]. 纺织学报, 2018, 39(8):71-76. |
GAO Shihui, YU Chongwen. Supercritical carbon dioxide extraction and bacterial resistance of flavones from Apocynum venetum bast fiber[J]. Journal of Textile Research, 2018, 39(8):71-76. | |
[7] |
WANG Q, WANG H, XIE M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus[J]. Archives of Microbiology, 2010, 192(11):893-898.
pmid: 20734190 |
[8] | OHEMENG K A, SCHWENDER C F, FU K P, et al. DNA gyrase inhibitory and antibacterial activity of some flavones: 1[J]. Bioorganic & Medicinal Chemistry Letters, 1993, 3(2):225-230. |
[9] |
PLAPER A, GOLOB M, HAFNER I, et al. Characterization of quercetin binding site on DNA gyrase[J]. Biochemical and Biophysical Research Communications, 2003, 306(2):530-536.
pmid: 12804597 |
[10] | 田莉莉. 天然酚酸类对DNA损伤的抑制效应研究[D]. 天津: 天津大学, 2010: 41-44. |
TIAN Lili. Inhibitory effects of natural phenolic acids on DNA damage[D]. Tianjin: Tianjin University, 2010: 41-44. | |
[11] |
TSUCHIYA H, IINUMA M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from sophora exigua[J]. Phytomedicine, 2000, 7(2):161-165.
pmid: 10839220 |
[12] |
ABRAM V, BERLEC B, OTA A, et al. Effect of flavonoid structure on the fluidity of model lipid membranes[J]. Food Chemistry, 2013, 139(1/4):804-813.
doi: 10.1016/j.foodchem.2013.01.100 |
[13] |
CUSHNIE T P T, LAMB A J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. Journal of Ethnopharmacology, 2005, 101(1/3):243-248.
doi: 10.1016/j.jep.2005.04.014 |
[14] |
MIRZOEVA O K, GRISHANIN R N, CALDER P C. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria[J]. Microbiological Research, 1997, 152(3):239-246.
pmid: 9352659 |
[15] |
HARAGUCHI H, TANIMOTO K, TAMURA Y, et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata[J]. Phytochemistry, 1998, 48(1):125-129.
pmid: 9621457 |
[16] |
SALVATORE M J, KING A B, GRAHAM A C, et al. Antibacterial activity of lonchocarpol A[J]. Journal of Natural Products, 1998, 61(5):640.
pmid: 9599265 |
[17] |
JEONG K, LEE J, KANG D, et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis[J]. Journal of Natural Products, 2009, 72(4):719-724.
doi: 10.1021/np800698d pmid: 19236029 |
[18] |
ZHANG L, KONG Y, WU D, et al. Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay[J]. Protein Science, 2008, 17(11):1971-1978.
pmid: 18780820 |
[19] |
PAOLILLO R, ROMANO CARRATELLI C, RIZZO A. Effect of resveratrol and quercetin in experimental infection by Salmonella enterica serovar typhimu-rium[J]. International Immunopharmacology, 2011, 11(2):149-156.
doi: 10.1016/j.intimp.2010.10.019 pmid: 21093605 |
[20] |
XIE W, ZHANG X, WANG T, et al. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): a review[J]. Journal of Ethnopharmacology, 2012, 141(1):1-8.
doi: 10.1016/j.jep.2012.02.003 pmid: 22421379 |
[21] |
STAPLETON P. Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins[J]. International Journal of Antimicrobial Agents, 2004, 24(4):374-380.
doi: 10.1016/j.ijantimicag.2004.03.024 pmid: 15380264 |
[22] |
IKIGAI H, NAKAE T, HARA Y, et al. Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta, 1993, 1147(1):132-136.
doi: 10.1016/0005-2736(93)90323-r pmid: 8466924 |
[23] |
TSUCHIYA H. Stereospecificity in membrane effects of catechins[J]. Chemico-Biological Interactions, 2001, 134(1):41-54.
doi: 10.1016/s0009-2797(00)00308-2 pmid: 11248221 |
[24] | 杨益, 苏文莉, 孙走南, 等. 植物多酚对5型腺病毒感染后宿主细胞膜流动性的影响[J]. 现代生物医学进展, 2015(18):3443-3447. |
YANG Yi, SU Wenli, SUN Zounan, et al. Effect of plant polyphenols on the membrane fluidity of 293a cells infected by adenovirus-5[J]. Progress in Modern Biomedicine, 2015(18):3443-3447. | |
[25] |
NAKAYAMA M, SHIMATANI K, OZAWA T, et al. A study of the antibacterial mechanism of catechins: isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate[J]. Food Control, 2013, 33(2):433-439.
doi: 10.1016/j.foodcont.2013.03.016 |
[26] | NAKAYAMA M, SHIMATANI K, OZAWA T, et al. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis[J]. Journal of the Agricultural Chemical Society of Japan, 2015, 79(5):845-854. |
[27] | ZHANG Y, ROCK C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Journal of Biological Chemistry, 2004, 279(30):30994-31001. |
[28] |
LI B, ZHANG R, DU Y, et al. Inactivation mechanism of the beta-ketoacyl-[acyl carrier protein] reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate[J]. Biochemistry and Cell Biology, 2006, 84(5):755-762.
pmid: 17167539 |
[29] |
IRIE K, SATO T, TANAKA I, et al. Cardiotonic effect of Apocynum venetum L. extracts on isolated guinea pig atrium[J]. Journal of Natural Medicines, 2009, 63(2):111-116.
pmid: 19002560 |
[30] | 邱坤和. 附子的安全应用[J]. 汕头大学医学院学报, 2002, 15(2):120. |
QIU Kunhe. Safe application of aconite[J]. Journal of Shantou University Medical College, 2002, 15(2):120. | |
[31] | 严秀珍, 梅兴国, 栾新慧, 等. 罗布麻茎的化学成分研究[J]. 上海第一医学院学报, 1985, 12(4):265-269. |
YAN Xiuzhen, MEI Xingguo, LUAN Xinhui, et al. Studies on constituents of stems of Apocynum venetum Linn[J]. Acta Academiae Medicinae Primae Shanghai, 1985, 12(4):265-269. | |
[32] | EBANA R U, MADUNAGU B E, EKPE E D, et al. Microbiological exploitation of cardiac glycosides and alkaloids from Garcinia kola, Borreria ocymoides, Kola nitida and Citrus aurantifolia[J]. Journal of Applied Microbiology, 2010, 71(5):398-401. |
[33] |
LI H, ZHAO X, WANG J, et al. β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumoniae infection[J]. Scientific Reports, 2016, 5(1):17688.
doi: 10.1038/srep17688 |
[34] | BOUSETLA A, ZELLAGUI A, DEROUICHE K, et al. Chemical constituents of the roots of Algerian Bunium incrassatum and evaluation of its antimicrobial activity[J]. Arabian Journal of Chemistry, 2015, 8(3):313-316. |
[35] | 王一冰. 原儿茶酸影响动物肠道屏障功能的研究[D]. 杭州: 浙江大学, 2017: 1-3. |
WANG Yibing. Effects of protocatechuic acid on intestinal barrier function of animal[D]. Hangzhou: Zhejiang University, 2017: 1-3. | |
[36] |
LIU K, TSAO S, YIN M. In vitro antibacterial activity of roselle calyx and protocatechuic acid[J]. Phytotherapy Research, 2005, 19(11):942-945.
pmid: 16317650 |
[37] |
FRIEDMAN M, HENIKA PRMANDRELL R E. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica[J]. Journal of Food Protection, 2003, 66(10):1811-1821.
pmid: 14572218 |
[38] | 吕锐, 苏冬梅, 孟林, 等. 罗布麻纤维的抗菌性能研究[J]. 青岛大学医学院学报, 2006, 42(1):71-72. |
LV Rui, SU Dongmei, MENG Lin, et al. Antibiotic property of Apocynum venetum[J]. Acta Academiae Medicinae Qingdao Universitatis, 2006, 42(1):71-72. | |
[39] | 王琨琳. 罗布麻织物服用性能的研究[D]. 芜湖: 安徽工程大学, 2014: 26-27. |
WANG Kunlin. Study on the wearability of Apocynum fibric[D]. Wuhu: Anhui Polytechnic University, 2014: 26-27. | |
[40] | GALBRAITH H, MILLER T B, PATON A M, et al. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol[J]. Journal of Applied Bacteriology, 1971, 34(4):803-813. |
[41] |
KABARA J J, SWIECZKOWSKI D M, CONLEY A J, et al. Fatty acids and derivatives as antimicrobial agents[J]. Antimicrobial Agents and Chemotherapy, 1972, 2(1):23-28.
doi: 10.1128/aac.2.1.23 pmid: 4670656 |
[42] | 张希, 杨明, 宋飞, 等. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2):155-160. |
ZHANG Xi, YANG Ming, SONG Fei, et al. Antimicrobial activity of selected fatty acids and their derivatives[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2013, 39(2):155-160. | |
[43] |
CHAMBERLAIN N R, MEHRTENS B G, XIONG Z, et al. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z[J]. Infection & Immunity, 1991, 59(12):4332-4337.
pmid: 1937793 |
[44] |
CARSON D D, DANEO-MOORE L. Effects of fatty acids on lysis of Streptococcus faecalis[J]. Journal of Bacteriology, 1980, 141(3):1122-1126.
pmid: 6102557 |
[45] |
SHEU C W, FREESE E. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis[J]. Journal of Bacteriology, 1972, 111(2):516-524.
pmid: 4626502 |
[46] |
BECK V, JABUREK M, DEMINA T, et al. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers[J]. The FASEB Journal, 2007, 21(4):1137-1144.
doi: 10.1096/fj.06-7489com pmid: 17242157 |
[47] |
WON S, HONG M, KIM Y, et al. Oleic acid: an efficient inhibitor of glucosyltransferase[J]. FEBS Letters, 2007, 581(25):4999-5002.
pmid: 17910959 |
[48] |
ZHENG C J, YOO J, LEE T, et al. Fatty acid synjournal is a target for antibacterial activity of unsaturated fatty acids[J]. FEBS Letters, 2005, 579(23):5157-5162.
doi: 10.1016/j.febslet.2005.08.028 pmid: 16146629 |
[49] | GALBRAITH H, MILLER T B. Effect of long chain fatty acids on bacterial respiration and amino acid uptake[J]. Journal of Applied Bacteriology, 1973, 36(4):659-675. |
[50] |
SCHONFELD P, WOJTCZAK L. Fatty acids as modulators of the cellular production of reactive oxygen species[J]. Free Radical Biology & Medicine, 2008, 45(3):231-241.
pmid: 18482593 |
[51] | ADOLPH S. Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla[J]. Journal of Experimental Biology, 2004, 207(17):2935-2946. |
[1] | 高世会 郁崇文. 罗布麻中黄酮的超临界CO2萃取及其抗菌性[J]. 纺织学报, 2018, 39(08): 71-76. |
[2] | 巩继贤 张秋亚 张涛 李政 张健飞. 韧皮结构对罗布麻生物脱胶的影响[J]. 纺织学报, 2017, 38(12): 83-87. |
[3] | 王莉 杨增光 张健飞 巩继贤 孟繁杰. 罗布麻秆粘胶纤维生产工艺技术[J]. 纺织学报, 2013, 34(6): 26-29. |
[4] | 林建原, 骆林峰, 陈亮, 余洪哲. 稀土镧-芦丁配合物的合成与表征及其抑菌活性[J]. 纺织学报, 2012, 33(5): 81-85. |
[5] | 季英超;姜凤琴;赵玉萍. 纤维用大麻品种的优选[J]. 纺织学报, 2010, 31(12): 19-22. |
[6] | 薛卫巍;翟秋梅;薛永常;郑来久. 罗布麻微生物脱胶工艺优化[J]. 纺织学报, 2009, 30(04): 80-84. |
[7] | 韩光亭.;张元明;冯勋伟;孙永军;刘彩明. 罗布麻生物脱胶工艺模型探讨[J]. 纺织学报, 2007, 28(11): 81-84. |
[8] | 韩光亭;张元明;孙亚宁. 不同含氮添加剂对罗布麻生物脱胶效果的影响[J]. 纺织学报, 2006, 27(3): 30-32. |
[9] | 徐红;白璐;李毅;殷刚. 罗布麻的生物酶脱胶与精梳[J]. 纺织学报, 2006, 27(12): 102-104. |
[10] | 周裔彬;刘正初;彭源德;冯湘沅;段盛文;郑科. 罗布麻脱胶时有机物总量变化规律的研究[J]. 纺织学报, 2003, 24(04): 21-22. |
[11] | 孙小寅;管映亭;温桂清;朱宝瑜. 大麻纤维的性能及其应用研究[J]. 纺织学报, 2001, 22(04): 34-36. |
|