纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 39-44.doi: 10.13475/j.fzxb.20191000606

• 纺织工程 • 上一篇    下一篇

应用上下文视觉显著性的色织物疵点检测

周文明, 周建, 潘如如()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2019-10-08 修回日期:2020-05-04 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 潘如如
  • 作者简介:周文明(1992—),男,硕士生。主要研究方向为基于图像处理的纺织智能检测、模式识别。
  • 基金资助:
    国家自然科学基金项目(61976105);中央高校基本科研业务费专项资金项目(JUSRP51631A)

Yarn-dyed fabric defect detection based on context visual saliency

ZHOU Wenming, ZHOU Jian, PAN Ruru()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2019-10-08 Revised:2020-05-04 Online:2020-08-15 Published:2020-08-21
  • Contact: PAN Ruru

摘要:

为实现色织物疵点的有效检测,提出一种应用上下文视觉显著性的疵点检测方法。根据上下文视觉显著性的原则,将织物图像分为大小相同的图像块;然后针对每个图像块,选取K个与其最相似的图像块计算与该图像块的差异值之和,用该差异值之和表示该图像块中心像素的显著性;从而生成一幅视觉显著性图;最后对显著性图进行阈值分割,得到色织物疵点的检测结果。为验证该算法的有效性,将带有纬缩、破洞和跳花等区域性疵点的素色、条纹和格子色织物图像作为样本进行检测。结果表明:该方法可较好地抑制不同种类织物的纹理背景,突出疵点区域,实现疵点的有效检测,该方法在色织物疵点检测上具有一定的可行性。

关键词: 疵点检测, 视觉显著性, 色织物, 阈值分割

Abstract:

In order to facilitate the effective detection of yarn-dyed fabric defects, a defect detecting method based on context visual saliency was proposed. Using this method, the fabric image was firstly divided into image patches of the same size according to the principle of context visual saliency. Following that, for every image patch, a number (K) of image patches, most similar to the concerned image patch were selected, and the sum of the differences among the K image patches and the image patch of concern were calculated. The calculated sum of the differences was then used to represent the saliency of center pixel of the image patches, thereby generating a visual saliency map. Finally, the threshold of the saliency map was segmented to obtain the detection result of the yarn-dyed fabric defect. In order to verify the validity of the algorithm, the yarn-dyed fabric regional defect image samples with looped weft, holes and netting of color dots, color stripes and color checks were detected. The experimental results show that the proposed algorithm can suppress the texture background and highlight the defect area of different types of fabrics and achieve the effective detection of fabric defects, which indicates the effectiveness of the method for detecting defects in yarn-dyed fabrics.

Key words: defect detection, visual saliency, yarn-dyed fabric, threshold segmentation

中图分类号: 

  • TS941.26

图1

色织物样本图像"

图2

条纹疵点单一尺度显著性检测效果图"

图3

条纹疵点多尺度显著性检测效果图"

图4

条纹疵点在4个尺度下的显著性均值检测结果"

图5

条纹疵点显著性检测效果图"

图6

本文算法视觉显著性检测效果图"

图7

疵点定位检测结果"

图8

视觉显著性图"

表1

疵点检测统计结果"

图像类型 检出张数 未检出张数 检测准确率/%
疵点图像 43 2 97.4
正常图像 32 0

图9

不同疵点检测方法检测效果对比"

[1] NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection: a review[J]. Image and Vision Computing, 2011,29(7):442-458.
doi: 10.1016/j.imavis.2011.02.002
[2] PATIL M, VERMA S, WAKODE J. A review on fabric defect detection techniques[J]. International Journal of Engineering Research & Technology, 2017,4(9):131-136.
[3] 刘洲峰, 赵全军, 李春雷, 等. 基于局部统计与整体显著性的织物疵点检测算法[J]. 纺织学报, 2014,35(11):62-67.
LIU Zhoufeng, ZHAO Quanjun, LI Chunlei, et al. A fabric defect detection algorithm based on local statistics and global significance[J]. Journal of Textile Research, 2014,35(11):62-67.
[4] ONI D I, OJO J A, ALABI B O, et al. Patterned fabric defect detection and classification (FDDC) techniques: a review[J]. International Journal of Scientific & Engineering Research, 2018,9(2):1156-1165.
[5] 李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014,35(3):158-164.
LI Wenyu, CHENG Longdi. New progress in fabric defect detection based on machine vision and image processing[J]. Journal of Textile Research, 2014,35(3):158-164.
[6] LI W, XUE W, CHENG L. Intelligent detection of defects of yarn-dyed fabrics by energy-based local binary patterns[J]. Textile Research Journal, 2012,82(19):1960-1972.
[7] ZHU D, PAN R, GAO W, et al. Yarn-dyed fabric defect detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015,15(3):226-232.
[8] ZHANG B, TANG C. A method for defect detection of yarn-dyed fabric based on frequency domain filtering and similarity measurement[J]. Autex Research Journal, 2018,19(3):257-262.
[9] ZHANG K, YAN Y, LI P, et al. Fabric defect detection using salience metric for color dissimilarity and positional aggregation[J]. IEEE Access, 2018,6:49170-49181.
doi: 10.1109/ACCESS.2018.2868059
[10] 李倩倩, 周武能. 利用上下文视觉显著性检测色织物的疵点[J]. 棉纺织技术, 2018,46(2):9-13.
LI Qianqian, ZHOU Wuneng. Detecting defects in colored fabrics using contextual saliency[J]. Cotton Textile Technology, 2018,46(2):9-13.
[11] CARRASCO M. Visual attention: the past 25 years[J]. Vision Research, 2011,51(13):1484-1525.
doi: 10.1016/j.visres.2011.04.012
[12] 张学武, 丁燕琼, 段敦勤, 等. 基于视觉仿生机理的铜带表面缺陷检测[J]. 中国图象图形学报, 2011,16(4):593-599.
doi: 10.11834/jig.20110409
ZHANG Xuewu, DING Yanqiong, DUAN Dunqin, et al. Detection of surface defects of copper strip based on visual bionic mechanism[J]. Journal of Image and Graphics, 2011,16(4):593-599.
doi: 10.11834/jig.20110409
[13] GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,34(10):1915-1926.
doi: 10.1109/TPAMI.2011.272 pmid: 22201056
[14] HU J, HE Z, WENG G, et al. Detection of chemical fabric defects on the basis of morphological proces-sing[J]. The Journal of The Textile Institute, 2016,107(2):233-241.
doi: 10.1080/00405000.2015.1022094
[15] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 1597-1604.
[16] HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]// IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
[1] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[2] 杨恩君, 廖义辉, 刘安东, 俞立. 基于低秩分解的织物疵点检测[J]. 纺织学报, 2020, 41(05): 72-78.
[3] 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187.
[4] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[5] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[6] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[7] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[8] 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44.
[9] 吴洋 向军 张宁 潘如如 高卫东. 结合交互评价的格子型色织物纹样优选[J]. 纺织学报, 2018, 39(09): 50-56.
[10] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[11] 孙菲菲 徐平华 丁雪梅 王荣武 吴雄英. 服饰设计视觉显著性检测[J]. 纺织学报, 2018, 39(03): 126-131.
[12] 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
[13] 管声启 何建新 王杰 李文森 雷鸣 . 应用小波域高斯差分滤波的起球疵点客观评价[J]. 纺织学报, 2017, 38(09): 155-161.
[14] 景军锋 张婉婉 李鹏飞. 应用显著性算法的纱线条干均匀度检测[J]. 纺织学报, 2017, 38(06): 130-135.
[15] 张宁 李忠健 潘如如 高卫东 韩要宾. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(05): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!