纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 135-144.doi: 10.13475/j.fzxb.20191001110

• 综合述评 • 上一篇    下一篇

碳纳米纤维结构设计及其对水污染物吸附机制的研究进展

方舟1,2, 宋磊磊3, 孙保金4, 李文肖2, 张超2, 闫俊2, 陈磊2()   

  1. 1.天津市特种设备监督检验技术研究院, 天津 300192
    2.天津工业大学 纺织科学与工程学院,天津 300387
    3.中航装甲科技有限公司, 天津 300304
    4.苏州市相城检测股份有限公司, 苏州 215110
  • 收稿日期:2019-10-08 修回日期:2020-05-11 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 陈磊
  • 作者简介:方舟(1988—),男,工程师,硕士。主要研究方向为锅炉检测及其清洗后污水处理。
  • 基金资助:
    中国博士后科学基金特别资助项目(2019T120189);中国博士后基金一等资助项目(2018M640240)

Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants

FANG Zhou1,2, SONG Leilei3, SUN Baojin4, LI Wenxiao2, ZHANG Chao2, YAN Jun2, CHEN Lei2()   

  1. 1. Tianjin Special Equipment Inspection Institute, Tianjin 300192, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. AECC Aegis Advanced Protective Technology Co., Ltd., Tianjin 300304, China
    4. Suzhou Xiangcheng Testing Co., Ltd., Suzhou, Jiangsu 215110, China
  • Received:2019-10-08 Revised:2020-05-11 Online:2020-08-15 Published:2020-08-21
  • Contact: CHEN Lei

摘要:

为促进碳纳米纤维(CNFs)在污水污染物吸附领域的应用,针对性开发具有高吸附性能的CNFs吸附剂,分别综述了静电纺丝法、化学气相沉积法、模板法以及绿色环保法制得的CNFs吸附剂的结构设计、制备、功能化改性原理等,着重分析了各CNFs吸附剂的吸附机制,列举了多种CNFs对污水中重金属离子、阳离子染料及有机污染物的吸附性能,探讨了不同方法制得的CNFs在制备效率、结构、吸附性能、重复利用性能等方面的优劣势,并阐述了CNFs吸附剂在电除盐、离子测定等其他领域的应用拓展;最后提出了低成本产业化制备、多污染物广泛吸附、力学性能提升、驻极辅助吸附、循环利用及其应用领域拓展等为今后CNFs吸附剂发展的重点方向。

关键词: 碳纳米纤维, 水体污染物, 吸附性能, 产业化制备, 污水处理

Abstract:

In order to better understand the applications of carbon nanofibers (CNFs) in sewage disposal and to realize the well-directed design of CNFs adsorbents with high adsorption performance, this paper comprehensively reviewed the structure design, preparation methods and functionalization strategies for CNFs prepared by electrospinning, chemical vapor deposition, template synthesis and other green methods, with adsorption mechanisms highlighted. In addition, a thorough comparison of adsorption performances toward heavy metal ions, cationic dyes and organic pollutants were listed. The advantages and disadvantages of CNFs prepared by different methods were compared based on their preparation efficiency, structures, adsorption and recycling performances. The extensive applications of CNFs adsorbents were elaborated, especially in the field of electric desalting and ion determination. Key research and development directions of CNFs absorbents for the future were concluded including industrialized and low cost preparation, adsorption toward various varieties of pollutants, improvement of mechanical properties, electric facilitated adsorption, recycling use and more extensive applications.

Key words: carbon nanofiber, sewage pollutants, adsorption performance, industrial production, sewage treatment

中图分类号: 

  • TQ028.2

图1

PAN纳米纤维在热处理下的化学反应机制"

图2

CNFs-CNTs制备和吸附流程图"

图3

PECVD法生长不同时间的CNFs-CNTs形貌(×5 000)"

表1

已发表的部分文献中CNFs对污染物吸附量对比"

吸附剂 制备方法 目标污染物 吸附时间/
min
pH值 初始质量浓度/
(mg·L-1)
最大吸附量/
(mg·g-1)
参考文献
CNFs 静电纺 亚甲基蓝 60 10 25~250 72.46 [9]
CNFs 静电纺 环丙沙星 240 6 3.0 10.36 [11]
CNFs 静电纺 苯酚 2 880 300 251.6 [54]
多孔CNFs 静电纺 硅油 138.4 [31]
多孔CNFs 静电纺 Pb(Ⅱ) 1 中性 0.01~10 7.1 [55]
多孔CNFs 静电纺 亚甲基蓝 20 3 567 [56]
CNFs/CNTs 静电纺 Cr(Ⅵ) 400 3 60 76.62 [16]
CNFs/ZrO2 静电纺 Sb(Ⅲ) 720 7±0.2 500 53 [25]
Sb(Ⅴ) 720 7±0.2 500 43
CNFs-CNTs 静电纺/CVD Cr(Ⅵ) 120 3 60 235 [27]
碳纤维/CNFs CVD As(Ⅴ) 300 6.5 14 [38]
碳微珠/CNFs CVD Cr(Ⅵ) 10~150 41 [34]
活性碳纤维-CNFs CVD Pb(Ⅱ) 50 40 [39]
苯酚 80 275
活性炭-CNFs CVD Pb(Ⅱ) 60 5.5 250 77 [40-41]
石墨毡-CNFs CVD Pb(Ⅱ) 1 440 5 400 113 [37]
刚果红 1 440 5 400 162.2
高岭土-CNFs CVD Pb(Ⅱ) 480 250 211 [44]
N掺杂活性炭-CNFs CVD Cd(Ⅱ) 720 161±5 [42]
Pb(Ⅱ) 1 440 88±53
硅酸盐-CNFs 模板法 炔雌醇 240 47~60 [47]

模板法CNFs

模板法
亚甲基蓝
Pb(Ⅱ)
240
240
7
6
700
225
~720
~400

[43]
Cr(Ⅵ) 240 2 500 ~175
细菌纤维素多孔CNFs 绿色法 Sr(Ⅱ) ~120 4.5 58.72 [45]
石墨烯/CNFs 其他方法 CCl4 598 [32]
CNTs-Fe2O3 其他方法 苯酚 150 7 2 2.778 [29]
[1] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展[J]. 环境化学, 2018,37(9):2016-2024.
LIU Jinyan, LIU Lihua, XUE Jianrong, et al. Research progress in adsorption of heavy metal ions in sewage[J]. Environmental Chemistry, 2018,37(9):2016-2024.
[2] 陶旭晨, 李林. 选择性吸附Pt(IV)的杯芳香烃纤维制备及其吸附动力学[J]. 纺织学报, 2019,40(3):20-31.
TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt(IV)[J]. Journal of Textile Research, 2019,40(3):20-31.
[3] 王杰, 汪滨, 杜宗玺, 等. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr(VI) 和Pb(II) 的吸附性能[J]. 纺织学报, 2020,41(1):1-7.
WANG Jie, WANG Bin, DU Zongxi, et al. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)[J]. Journal of Textile Research, 2020,41(1):1-7.
[4] LI Baiyan, ZHANG Yiming, MA Dingxuan, et al. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution[J]. Nature Communications, 2014,5:1-7.
[5] MOHAMMADI S Z, AFZALI D, POURTALEBI D. Flame atomic absorption spectrometric determination of trace amounts of lead, cadmium and nickel in different matrixes after solid phase extraction on modified multiwalled carbon nanotubes[J]. Central European Journal of Chemistry, 2010,8(3):662-668.
[6] TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology, 2006,17(14):89-106.
[7] 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019,40(6):134-142.
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019,40(6):134-142.
[8] DONG Q, WAND G, WU T T, et al. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes[J]. Journal of Colloid and Interface Science, 2015,446:373-378.
pmid: 25595622
[9] WANG J H, ZHANG Z, ZHANG Q, et al. Preparation and adsorption application of carbon nanofibers with large specific surface area[J]. Journal of Materials Science, 2018,53(24):16466-16475.
[10] PARK C, ENGEL E S, CROWE A, et al. Use of carbon nanofibers in the removal of organic solvents from water[J]. Langmuir, 2000,16(21):8050-8056.
[11] IBUPOTO A S, QURESHI U A, AHMED F, et al. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution[J]. Chemical Engineering Research & Design, 2018,136:744-752.
[12] LI X N, CHEN S, FAN X F, et al. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon[J]. Journal of Colloid and Interface Science, 2015,447:120-127.
pmid: 25702869
[13] LI X N, WANG W Q, DOU J, et al. Dynamic adsorption of ciprofloxacin on carbon nanofibers: quantitative measurement by in situ fluorescence[J]. Journal of Water Process Engineering, 2016,9:14-20.
[14] BECK R J, ZHAO Y, FONG H, et al. Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applica-tions[J]. Journal of Water Process Engineering, 2017,16:240-248.
[15] BAI Y, HUANG Z H, KANG F Y. Surface oxidation of activated electrospun carbon nanofibers and their adsorption performance for benzene, butanone and ethanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,443:66-71.
[16] BAI Y, HUANG Z H, ZHANG Z X, et al. Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting acid groups[J]. Journal of Colloid and Interface Science, 2013,394:177-182.
doi: 10.1016/j.jcis.2012.11.043 pmid: 23261348
[17] HOMAEIGOHAR S, STRUNSKUS T, STROBEL J, et al. A flexible oxygenated carbographite nanofilamentous buckypaper as an amphiphilic membrane[J]. Advanced Materials Interfaces, 2018,5(8):1800001.
[18] SUN W Y, WU H M, XU Z W, et al. Adsorption of heavy metal ions by carbon-nanofibers-blended carbon nanotubes[J]. Chemistry Select, 2018,3(44):12410-12414.
[19] 伍海明, 陈磊, 李翠玉. 碳纳米复合结构纤维膜吸附性能研究[J]. 天津纺织科技, 2018(1):31-35.
WU Haiming, CHEN Lei, LI Cuiyu. Adsorption properties of carbon nanocomposite fiber film[J]. Tianjin Textile Science & Technology, 2018(1):31-35.
[20] GAMINIAN H, MONTAZER M. Carbon black enhanced conductivity, carbon yield and dye adsorption of sustainable cellulose derived carbon nanofibers[J]. Cellulose, 2018,25(9):5227-5240.
doi: 10.1007/s10570-018-1929-6
[21] PETER K T, VARGO J D, RUPASINGHE T P, et al. Synjournal, optimization, and performance demonstration of electrospun carbon nanofiber-carbon nanotube composite sorbents for point-of-use water treatment[J]. ACS Applied Materials & Interfaces, 2016,8(18):11431-11440.
pmid: 27093306
[22] SI Y, REN T, DING B, et al. Synjournal of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification[J]. Journal of Materials Chemistry, 2012,22(11):4619-4622.
[23] HAN C P, MA Q L, DONG X T, et al. In situ synjournal of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics[J]. Journal of Materials Science: Materials in Electronics, 2015,26(4):2457-2465.
[24] WU X Q, SHAO Z D, LIU Q, et al. Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water[J]. Journal of Colloid and Interface Science, 2019,553:156-166.
pmid: 31202052
[25] BEHNAM R, MORSHED M, TAVANAI H, et al. Destructive adsorption of diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles[J]. Bulletin of Environmental Contamination and Toxicology, 2013,91(4):475-480.
doi: 10.1007/s00128-013-1064-x pmid: 23912227
[26] DADVAR S, TAVANAI H, MORSHED M, et al. A study on the kinetics of 2-chloroethyl ethyl sulfide adsorption onto nanocomposite activated carbon nanofibers containing metal oxide nanoparticles[J]. Separation and Purification Technology, 2013,114:24-30.
[27] LUO J M, LUO X B, CRITTENDEN J, et al. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science & Technology, 2015,49(18):11115-11124.
doi: 10.1021/acs.est.5b02903 pmid: 26301862
[28] REZANI-EIVARI M, AMIRI A, BGHAYERI M, et al. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples[J]. Journal of Chromatography A, 2016,1465:1-8.
pmid: 27578405
[29] CHEN L, CHEN N N, WU H M, et al. Flexible design of carbon nanotubes grown on carbon nanofibers by PECVD Chock for enhanced Cr(VI) adsorption capa-city[J]. Separation and Purification Technology, 2018,207:406-415.
[30] WU Haiming, ZHOU Zhiyong, CHEN Lei, et al. PECVD-induced growing of diverse nanomaterials on carbon nanofibers under various conditions[J]. Materials Letters, 2018,216:291-294.
[31] ASMALY H A, ABUSSAUD B, IHSAN K, et al. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synjournal to enhanced removal of phenol[J]. Journal of Saudi Chemical Society, 2015,19(5):511-520.
[32] GUAN L, GUTIERREZ M C, ROLDAN-RUIZ M J, et al. Highly efficient and recyclable carbon-nanofiber-based aerogels for ionic liquid-water separation and ionic liquid dehydration in flow-through conditions[J]. Advanced Materials, 2019,31(39):1903418.
[33] LUO H L, XIE J, WANG J, et al. Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent[J]. Carbon, 2018,139:824-832.
[34] XU Z Y, JIANG X D, TAN S C, et al. Preparation and characterisation of CNF/MWCNT carbon aerogel as efficient adsorbents[J]. Iet Nanobiotechnology, 2018,12(4):500-504.
doi: 10.1049/iet-nbt.2017.0234 pmid: 29768237
[35] TAKAHASHI Y, FUJITA H, SAKODA A. Adsorption of ammonia and water on functionalized edge-rich carbon nanofibers[J]. Adsorption, 2013,19(1):143-159.
[36] TALREJA N, KUMAR D, VERMA N. Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads[J]. Journal of Water Process Engineering, 2014,3:34-45.
[37] OLIVERIA L C A D, SILVA A C D, MACHADO A R T, et al. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water[J]. Journal of Nanoparticle Research, 2013,15(5):1631.
[38] LAN Y K, CHEN T C, TSAI H J, et al. Adsorption behavior and mechanism of antibiotic sulfamethoxazole on carboxylic-functionalized carbon nanofibers-wncapsulated Ni magnetic nanoparticles[J]. Langmuir, 2016,32(37):9530-9539.
doi: 10.1021/acs.langmuir.6b02904 pmid: 27578402
[39] SHEN Y, LI L, XIAO K J, et al. Constructing three-dimensional hierarchical architectures by integrating carbon nanofibers into graphite felts for water purific-ation[J]. ACS Sustainable Chemistry & Engineering, 2016,4(4):2351-2358.
[40] GUPTA A K, DEVA D, SHARMA A, et al. Fe-grown carbon nanofibers for removal of arsenic(V) in wastewater[J]. Industrial & Engineering Chemistry Research, 2010,49(15):7074-7084.
[41] CHAKRABORTY A, DEVA D, SHARMA A, et al. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water[J]. Journal of Colloid and Interface Science, 2011,359(1):228-239.
doi: 10.1016/j.jcis.2011.03.057 pmid: 21507421
[42] MAMUN A A, AHMED Y M, ALKHATIB M F R, et al. Lead sorption by carbon nanofibers grown on powdered activated carbon-kinetics and equilibrium[J]. Nano, 2015,10(2):1550017.
[43] AHEMD Y M, MAMUN A A, ALKHATIB M F R, et al. Efficient lead sorption from wastewater by carbon nanofibers[J]. Environmental Chemistry Letters, 2015,13(3):341-346.
[44] MODI A, BHADURI B, VERMA N. Facile one-step synjournal of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water[J]. Industrial & Engineering Chemistry Research, 2015,54(18):5172-5178.
[45] FAGHIHIAN H, KOORAVAND M, ATARODI H. Synjournal of a novel carbon nanofiber structure for removal of lead[J]. Korean Journal of Chemical Engineering, 2013,30(2):357-363.
[46] PURVENO A D, TEIXEIRA A P C, DESOUZA N J, et al. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol[J]. Journal of Colloid and Interface Science, 2012,379:84-88.
doi: 10.1016/j.jcis.2012.04.018 pmid: 22608147
[47] LIANG H W, CAO X, ZHANG W J, et al. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification[J]. Advanced Functional Materials, 2011,21(20):3851-3858.
[48] HSIEH C T, CHEN J M, HUANG Y H, et al. Adsorptive surface coverage of carbon tetrachloride onto carbon nanofibers array[J]. Solid State Phenomena, 2007, 121-123:417-423.
[49] YE F, YANG P J. The batch and modeling investigation of Sr(II) adsorption on carbon nanofibers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016,310(1):279-285.
[50] HU Q Y, ZHAO Q Z, HU B W, et al. Using of carbon nanofibers as effective scavengers for the uptake of Co(II) and Ni(II) in water by batch investigations[J]. Desalination and Water Treatment, 2018,136:299-305.
doi: 10.5004/dwt
[51] MUBARAK N M, FAGHIHZADEH A, TAN K W, et al. Microwave assisted carbon nanofibers for removal of zinc and copper from waste water[J]. Journal of Nanoscience and Nanotechnology, 2017,17(3):1847-1856.
doi: 10.1166/jnn.2017.12818
[52] GUPTA V K, AGARWAL S, TYAGI I, et al. Microwave-assisted hydrothermal synjournal and adsorption properties of carbon nanofibers for methamphetamine removal from aqueous solution using a response surface methodology[J]. Journal of Industrial and Engineering Chemistry, 2016,41(25):158-164.
[53] CHEN S S, CHEN D Z, WANG W X, et al. rGO-stabilized MnO/N-doped carbon nanofibers for efficient removal of Pb(II) ion and catalytic degradation of methylene blue[J]. Journal of Materials Science, 2017,52(9):5117-5132.
[54] MAHAR F K, HE L L, WEI K, et al. Rapid adsorption of lead ions using porous carbon nanofibers[J]. Chemosphere, 2019,225:360-367.
doi: 10.1016/j.chemosphere.2019.02.131 pmid: 30884297
[55] LI S Q, ZHANG Y, YOU Q L, et al. Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,558:392-401.
[56] LIU H, CAO C Y, WEI F F, et al. Flexible macroporous carbon nanofiber film with high oil adsorption capacity[J]. Journal of Materials Chemistry A, 2014,2(10):3557-3562.
[57] HUSSAIN T, WANG Y B, XIONG Z B, et al. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization[J]. Journal of Colloid and Interface Science, 2018,532:343-351.
doi: 10.1016/j.jcis.2018.07.129 pmid: 30096528
[58] WANG X Z, LI M G, CHEN Y W, et al. Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes[J]. Electrochemical and Solid State Letters, 2006,9(9):23-26.
[59] GAO Y, PAN L K, ZHANG Y P, et al. Electrosorption of FeCl3 solutions with carbon nanotubes and nanofibers film electrodes grown on graphite substrates[J]. Surface Review and Letters, 2007,14(6):1033-1037.
doi: 10.1142/S0218625X07010597
[60] LI H B, PAN L K, ZHANG Y P, et al. Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electro-des[J]. Chemical Physics Letters, 2010,485(1-3):161-166.
[61] ZHAN Y K, NIE C Y, LI H B, et al. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers[J]. Electrochimica Acta, 2011,56(9):3164-3169.
doi: 10.1016/j.electacta.2011.01.059
[62] DONG Q, WANG G, QIAN B Q, et al. Electrospun composites made of reduced graphene and activated carbon nanofibers for capacitive deionization[J]. Electrochimica Acta, 2014,137:388-394.
doi: 10.1016/j.electacta.2014.06.067
[63] LIU X, CHEN T, QIAO W C, et al. Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,72:213-219.
[64] LIU Y, MA J Q, LU T, et al. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization[J]. Scientific Reports, 2016,6:32784.
pmid: 27608826
[65] CHEN S Z, ZHAN X L, LU D B, et al. Study on adsorption behavior of Mn(II) and Mn(VII) on modified carbon nanofibers and their determination by inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2008,29(2):45-50.
[66] YAN J T, CHEN S Z, LI J F, et al. Study on the determination of rrace lead and cadmium by ICP-MS after preconcentration and separation on sarbon nanofibers loaded with 8-hydroxyquinoline[J]. Atomic Spectroscopy, 2017,38(2):42-47.
[1] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[2] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[5] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[6] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[7] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[8] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[9] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[10] 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13.
[11] 何俊燕, 李明福, 张劲, 庄志凯, 连文伟. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(05): 1-6.
[12] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
[13] 闫涛 潘志娟. 静电纺纳米纤维柔性应变传感器的研究现状[J]. 纺织学报, 2018, 39(12): 152-157.
[14] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[15] 李树锋 刘高华 谢小军 韩永兴 张艳 程博闻. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017, 38(12): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!