纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 95-101.doi: 10.13475/j.fzxb.20191003007
王纯怡1,2, 吴伟1,2, 王健3, 徐红1,2,4, 毛志平1,2,4,5()
WANG Chunyi1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()
摘要:
为探究分散染料在超临界CO2和水中各自染色条件下的溶解性,基于分子动力学模拟,采用热力学积分方法分别计算了C.I.分散棕19在2种溶剂中的溶解自由能和结合自由能,并采用平均非键相互作用方法分析了C.I.分散棕19染料分子与2种溶剂分子间的弱相互作用类型及稳定性。模拟结果表明:C.I.分散棕19染料分子在超临界CO2(24 MPa,130 ℃)和水(0.25 MPa,130 ℃)中的自由能绝对值均较小且相差不大,但其在超临界CO2中的溶解自由能绝对值稍小,结合自由能绝对值稍大;C.I.分散棕19染料分子与2种溶剂分子间均只存在较弱且不稳定的范德华色散作用,但其与超临界CO2分子间的弱相互作用相对于水更不稳定。
中图分类号:
[1] | 侯爱芹, 戴瑾瑾. 分散染料在超临界CO2中上染涤纶的研究[J]. 纺织学报, 2004,25(5):17-19. |
HOU Aiqin, DAI Jinjin. Study on dyeing properties of polyester with disperse dyes in supercritical carbon dioxide[J]. Journal of Textile Research, 2004,25(5):17-19 | |
[2] | 鲁雪燕. 新型环保三原色分散染料在超临界CO2中溶解度的测定与关联研究[D]. 杭州:浙江工业大学, 2009: 14-15. |
LU Xueyan. Measurement and correlation of solubilities of the new environment-friendly trichromatic disperse dyes in supercritical carbon dioxide[D]. Hangzhou: Zhejiang University of Technology, 2009: 14-15. | |
[3] | 郑金花. 分散红54在超临界CO2/共溶剂中溶解度的测定与关联[D]. 杭州:浙江工业大学, 2010: 10-12. |
ZHENG Jinhua. Measurement correlation of solubilities of Disperse Red 54 in supercritical carbon dioxide with cosolvent[D]. Hangzhou: Zhejiang University of Technology, 2010: 10-12. | |
[4] | 林春绵, 宋赛赛, 刘建峰. 分散染料在超临界CO2中的溶解性研究进展[J]. 印染, 2005(16):46-50. |
LIN Chunmian, SONG Saisai, LIU Jianfeng. Progress in solubility of disperse dyes in supercritical carbon dioxide[J]. China Dyeing & Finishing, 2005(16):46-50. | |
[5] | 余志成, 林鹤鸣. 分散蓝79在超临界CO2中的溶解特性及染色行为[J]. 纺织学报, 2006,27(6):51-54. |
YU Zhicheng, LIN Heming. Solubility and dyeing performance of Disperse Blue 79 in supercritical carbon dioxide[J]. Journal of Textile Research, 2006,27(6):51-54. | |
[6] | KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019,33:1-11. |
[7] | SHINODA T, TAMURA K. Solubilities of CI Disperse Orange 25 and CI Disperse Blue 354 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2003,48(4):869-873. |
[8] | DONG P, XU M, LU X, et al. Measurement and correlation of solubilities of CI Disperse Red 73, CI Disperse Yellow 119 and their mixture in supercritical carbon dioxide[J]. Fluid Phase Equilibria, 2010,297(1):46-51. |
[9] | 宋赛赛. 分散染料在超临界CO2染色中的溶解性及分配性研究[D]. 杭州:浙江工业大学, 2006: 22-46. |
SONG Saisai. Solubility and partition of disperse dyes in supercritical carbon dioxide dyeing[D]. Hangzhou: Zhejiang University of Technology, 2006: 22-46. | |
[10] | FERUS-COMELO M. A new method to measure the solubility of disperse dyes in water at high tempera-ture[J]. Coloration Technology, 2015,131(4):269-271. |
[11] |
DATYNER A. The solubilization of disperse dyes by dispersing agents at 127 ℃[J]. Journal of the Society of Dyers and Colourists, 1978,94(6):256-260.
doi: 10.1111/(ISSN)1478-4408b |
[12] |
PRIKRYL J, RUZICKA J, BURGERT L. A new method of determining the solubility of disperse dyes[J]. Journal of the Society of Dyers and Colourists, 1979,95(10):349-351.
doi: 10.1111/(ISSN)1478-4408b |
[13] | 何玉宏. 高温分散剂的合成及其对分散染料的染色应用[D]. 上海:东华大学, 2018: 1-10. |
HE Yuhong. Synthesis of high temperature dispersants and their application to dyes[D]. Shanghai: Donghua University, 2018: 1-10. | |
[14] |
CHAMI F, WILSON M R. Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye sunset yellow[J]. Journal of The American Chemical Society, 2010,132(22):7794-7802.
doi: 10.1021/ja102468g pmid: 20469909 |
[15] |
PETRENKO V E, ANTIPOVA M L, GURINA D L. Solvation of salicylic acid in pure, methanol-modified and water-modified supercritical carbon dioxide: molecular dynamics simulation[J]. The Journal of Supercritical Fluids, 2015,104:227-233.
doi: 10.1016/j.supflu.2015.06.016 |
[16] |
JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of The American Chemical Society, 1996,118(45):11225-11236.
doi: 10.1021/ja9621760 |
[17] | HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry C, 1995,99(31):12021-12024. |
[18] | WANG J, ZHONG H, FENG H, et al. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution[J]. Journal of Chemical Physics, 2014,140(10):104501. |
[19] |
PIPOLO S, BENASSI E, BRANCOLINI G, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012,131(10):1274.
doi: 10.1007/s00214-012-1274-z |
[20] |
DODDA L S, VILSECK J Z, CUTRONA K J, et al. Evaluation of CM5 charges for nonaqueous condensed-phase modeling[J]. Journal of Chemical Theory and Computation, 2015,11(9):4273-4282.
doi: 10.1021/acs.jctc.5b00414 pmid: 26575922 |
[21] |
MOBLEY D L, CHODERA J D, DILL K A. On the use of orientational restraints and symmetry corrections in alchemical free energy calcula-tions[J]. The Journal of Chemical Physics, 2006,125(8):084902.
doi: 10.1063/1.2221683 pmid: 16965052 |
[22] |
POHORLLE A, JARZYNSKI C, CHIPOT C. Good practices in free-energy calculations[J]. The Journal of Physical Chemistry B, 2010,114(32):10235-10253.
doi: 10.1021/jp102971x pmid: 20701361 |
[23] |
BORESCH S, TETTINGER F, LEITGEB M, et al. Absolute binding free energies: a quantitative approach for their calculation[J]. The Journal of Physical Chemistry B, 2003,107(35):9535-9551.
doi: 10.1021/jp0217839 |
[24] |
KLIMOVICH P V, SHIRTS M R, MOBLEY D L. Guidelines for the analysis of free energy calcula-tions[J]. Journal of Computer-Aided Molecular Design, 2015,29(5):397-411.
doi: 10.1007/s10822-015-9840-9 pmid: 25808134 |
[25] |
JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of The American Chemical Society, 2010,132(18):6498-506.
doi: 10.1021/ja100936w pmid: 20394428 |
[26] | 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019,40(8):80-84. |
HU Jinhua, YAN Jun, LI Hong, et al. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2[J]. Journal of Textile Research, 2019,40(8):80-84. | |
[27] |
ALWI R S, TAMURA K. Measurement and correlation of derivatized anthraquinone solubility in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2015,60(10):3046-3052.
doi: 10.1021/acs.jced.5b00480 |
[28] |
SUNG H D, SHIM J J. Solubility of C.I. Disperse Red 60 and C.I. Disperse Blue 60 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 1999,44(5):985-989.
doi: 10.1021/je990018t |
[29] | PATTERSON D, SHELDON R P. The solubilities and heats of solution of disperse dyes in water[J]. Journal of the Society of Dyers and Colourists, 1960,76(3):178-181. |
[1] | 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2 煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-100. |
[2] | 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93. |
[3] | 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87. |
[4] | 刘越, 莫林祥, 陈丰. 拼混型黑色分散染料的配伍性及其染色性能[J]. 纺织学报, 2019, 40(12): 63-67. |
[5] | 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57. |
[6] | 钱璐敏, 张斌. 可溶性止血医用棉纱布的制备及其性能[J]. 纺织学报, 2019, 40(05): 102-106. |
[7] | 武奇奇, 李敏, 刘怡宁, 王乐军, 张丽平, 付少海. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(01): 79-83. |
[8] | 艾丽 曹红梅 朱亚伟 丁志平. 基于液体分散染料的微量印花技术[J]. 纺织学报, 2018, 39(09): 77-83. |
[9] | 梁静 钟毅 毛志平 徐红 张琳萍 隋晓锋. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018, 39(07): 69-73. |
[10] | 叶思佳 杜奕铃 张永高 郑今欢. 涤纶起绒织物着色烂花印花中分散染料的耐碱性[J]. 纺织学报, 2018, 39(01): 98-103. |
[11] | 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90. |
[12] | 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184. |
[13] | 郑环达 胥维昌 赵强 岳成君 单世宝 闫俊 郑来久. 涤纶筒纱超临界二氧化碳流体染色工程化装备与工艺[J]. 纺织学报, 2017, 38(08): 86-90. |
[14] | 傅伟松 周乃锋 陈华祥 唐智勇. 利用分散染料废水的硫酸铵自动连续化制备[J]. 纺织学报, 2017, 38(07): 107-111. |
[15] | 周乃锋 傅伟松 唐智勇 陈华祥 张玲玲 刘宏君. 基于粒径分析的分散染料黑浆聚集沉淀[J]. 纺织学报, 2016, 37(4): 80-85. |
|