纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 122-128.doi: 10.13475/j.fzxb.20191003708
陈文豆1,2,3, 张辉1,2,3(), 陈天宇1,2,3, 武海良1,2,3
CHEN Wendou1,2,3, ZHANG Hui1,2,3(), CHEN Tianyu1,2,3, WU Hailiang1,2,3
摘要:
为赋予涤/棉混纺织物光催化自清洁性能,基于水热合成技术,分别使用钛酸四丁酯、硫酸钛以及硫酸氧钛在涤/棉混纺织物表面负载纳米TiO2颗粒,借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、热重分析仪和紫外-可见光漫反射光谱仪等对TiO2改性涤/棉混纺织物的结构和性能进行分析,比较了不同种类TiO2前驱体改性涤/棉混纺织物可见光下降解污物的自清洁能力。结果表明:较钛酸四丁酯和硫酸钛改性的涤/棉混纺织物,硫酸氧钛改性涤/棉混纺织物接枝的锐钛矿型TiO2颗粒多且尺寸小,光吸收能力增强,禁带宽度减小,其光催化自清洁性能优异,5次洗涤后自清洁性能没有明显减弱。
中图分类号:
[1] | SIVAKUMAR A, MURUGAN R, PERIYASAMY S. Evaluation of multifunctional properties of polyester/cotton blend treated with unmodified and modified nano-TiO2 particles[J]. Materials Technology, 2016,31(5):286-298. |
[2] |
KHAN M Z, ASHRAF M, HUSSAIN T, et al. In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties[J]. Fibers and Polymers, 2015,16(5):1092-1097.
doi: 10.1007/s12221-015-1092-8 |
[3] |
HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: acritical review[J]. Green Chemistry Letters and Reviews, 2018,11(2):86-102.
doi: 10.1080/17518253.2018.1440324 |
[4] |
LEE K, YOON H, AHN C, et al. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials[J]. Nanoscale, 2019,11(15):7025-7040.
pmid: 30920558 |
[5] | REDDY K R, HASSAN M, GOMES V G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J]. Applied Catalysis A:General, 2015,489:1-16. |
[6] |
GORJANC M, SALA M. Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes[J]. International Journal of Nanomedicine, 2017,12:2593-2606.
pmid: 28408826 |
[7] |
ZHANG Weiwei, ZHANG Desuo, CHEN Yuyue, et al. Hyperbranched polymer functional TiO2 nanoparticles: synjournal and its application for the anti-UV finishing of silk fabric[J]. Fibers and Polymers, 2015,16(3):503-509.
doi: 10.1007/s12221-015-0503-1 |
[8] | EL-NAGGER A A, ELSAYED S S, IBRAHIM S M. Effects of TiO2 on the hydrophilicity of cotton/polyester (50/50) blend fabric under UV irradiation[J]. Nanotechnology Business Journal, 2017,90(2):277-283. |
[9] | 解芳, 米丹. 纳米二氧化钛水溶胶对涤纶织物的抗静电整理[J]. 染整技术, 2008,30(10):14-15. |
XIE Fang, MI Dan. Antistatic finishing of polyester fabric with nano titanium dioxide hydrosol[J]. Textile Dyeing and Finishing Journal, 2008,30(10):14-15. | |
[10] |
MONTAZER M, SEIFOLLAHZADEH S. Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties[J]. Coloration Technology, 2011,127(5):322-327.
doi: 10.1111/j.1478-4408.2011.00316.x |
[11] | LI Zhiqiang, DONG Yongchun, LI Bing, et al. Creation of self-cleaning polyester fabric with TiO2 nanoparticles via a simple exhaustion process: conditions optimization and stain decomposition pathway[J]. Materials & Design, 2018,140:366-375. |
[12] | 吕赛龙, 霍瑞亭, 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018,39(5):87-91. |
LÜ Sailong, HUO Ruiting, JIA Guoqiang. Preparation and properties of photocatalytic self-cleaning textiles[J]. Journal of Textile Research, 2018,39(5):87-91. | |
[13] |
CAPUTO F, NICOLA M D E, SIENKIEWICZ A, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis[J]. Nanoscale, 2015,7(38):15643-15656.
doi: 10.1039/c5nr03767k pmid: 26349675 |
[14] |
LIU Shi, ZHANG Qian, XU Zhangjie, et al. Surface modification of TiO2/SiO2 composite hydrosol stabilized with polycarboxylic acid on Kroy-process wool fabric[J]. Journal of Adhesion Science and Technology, 2017,31(11):1209-1218.
doi: 10.1080/01694243.2016.1249687 |
[15] |
YU Jian, PANG Zengyuan, ZHENG Chenghui, et al. Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity[J]. Applied Surface Science, 2018,470:84-90.
doi: 10.1016/j.apsusc.2018.11.112 |
[16] |
KAPLAN R, ERJAVEC B, DRAZIC G, et al. Simple synjournal of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants[J]. Applied Catalysis B:Environmental, 2016,181:465-474.
doi: 10.1016/j.apcatb.2015.08.027 |
[17] |
ZIKRIYA M, NADAF Y F, BHARATHY P V, et al. Luminescent characterization of rare earth Dy~(3+) ion doped TiO2 prepared by simple chemical co-precipitation method[J]. Journal of Rare Earths, 2019,37(1):24-31.
doi: 10.1016/j.jre.2018.05.012 |
[18] |
MONTAZER M, SEIFOLLAHZADEH S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreat-ment[J]. Photochemistry and Photobiology, 2011,87(4):877-83.
doi: 10.1111/j.1751-1097.2011.00917.x |
[19] |
XIAO Xingfang, LIU Xin, CHEN Fengxia, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015,7(38):21326-21333.
doi: 10.1021/acsami.5b05868 pmid: 26389713 |
[20] |
IWASAKI M, MIYAMOTO Y, ITO S, et al. Fabrication of platy apatite nanocrystals loaded with TiO2 nanoparticles by two-step emulsion method and their photocatalytic activity[J]. Journal of Colloid and Interface Science, 2008,326(2):537-540.
doi: 10.1016/j.jcis.2008.07.041 pmid: 18703202 |
[21] |
GUPTA V K, FAKHRL A, AGARWAL S, et al. Preparation and characterization of TiO2 nanofibers by hydrothermal method for removal of Benzodiazepines (Diazepam) from liquids as catalytic ozonation and adsorption processes[J]. Journal of Molecular Liquids, 2018,249:1033-1038.
doi: 10.1016/j.molliq.2017.11.144 |
[22] |
ZHANG H, ZHANG X T. Modification and dyeing of silk fabric treated with tetrabutyl titanate by hydrothermal method[J]. Journal of Natural Fibers, 2014,11(1):25-38.
doi: 10.1080/15440478.2013.824852 |
[23] | ZHANG Hui, ZHU Linlin, SUN Runjun. Structure and properties of cotton fibers modified with titanium sulfate and urea under hydrothermal conditions[J]. Journal of Engineered Fibres and Fabrics, 2014,9(1):67-75. |
[24] |
BAVYKIN D V, DUBOVITSKAYA V P, VORONTSOV A V, et al. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gasphase oxidative activity[J]. Research on Chemical Intermediates, 2007,33(3-5):449-464.
doi: 10.1163/156856707779238702 |
[25] |
XU Hao, LIU Shiqi, ZHOU Shan, et al. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values[J]. Rare Metals, 2018,37(9):750-758.
doi: 10.1007/s12598-017-0960-3 |
[26] |
RANA M, HAO B, MU L, et al. Development of multi-functional cotton fabrics with Ag/AgBreTiO2 nanocomposite coating[J]. Composites Science and Technology, 2016,122:104-112.
doi: 10.1016/j.compscitech.2015.11.016 |
[27] |
ZHOU Wenya, ZHANG Yangyang, SHI Yidong. In situ Loading TiO2 and its photocatalysis and UV resistance on cotton fabric[J]. Fibers and Polymers, 2017,18(6):1073-1078.
doi: 10.1007/s12221-017-1055-3 |
[28] |
ZHANG Hui, YANG Lu. Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method[J]. Journal of The Textile Institute, 2012,103(8):885-892
doi: 10.1080/00405000.2011.621678 |
[29] |
BOZZI A, YURANOVA T, KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005,172:27-34.
doi: 10.1016/j.jphotochem.2004.11.010 |
[30] | BANERJEE S, DIONYSIOU D D, PILLAI S C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis[J]. Applied Catalysis B-Environmental, 2015,176:396-428. |
[31] |
ZHANG Xi, AI Zhihui, JIA Falong, et al. Generalized one-pot synjournal characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C, 2008,112(3):747-753.
doi: 10.1021/jp077471t |
[32] | ZHANG Yeguang, ZHANG Shufen, WU Suli. Room-temperature fabrication of TiO2-PHEA nanocomposite coating with high transmittance and durable superhydrophilicity[J]. Chemical Engineering Journal, 2019,371:609-617. |
[33] |
ZUNIC V, VUKOMANOVIC M, SKAPIN S D, et al. Photocatalytic properties of TiO2 and TiO2/Pt: a sol-precipitation, sonochemical and hydrothermal approach[J]. Ultrasonics Sonochemistry, 2014,21(1):367-375.
doi: 10.1016/j.ultsonch.2013.05.018 pmid: 23831420 |
[34] | WU Deyong, LONG Mingce, ZHOU Jiangya, et al. Synjournal and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach[J]. Surface & Coatings Technology, 2009,203(24):3728-3733. |
[35] |
MILOSEVIC M, KRKOBABIC A, RADOICIC M, et al. Biodegradation of cotton and cotton/polyester with Ag/TiO2 nanoparticles in soil[J]. Carbohydrate Polymers, 2017,158:77-84.
doi: 10.1016/j.carbpol.2016.12.006 pmid: 28024545 |
[36] | CHUNG C, LEE M, CHOE E K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy[J]. Carbohydrate Polymers, 2004,58(4):417-420. |
[37] | UDDIN M J, CESANO F, SCARANO D, et al. Cotton textile fibres coated by Au/TiO2 films: synjournal, characterization and self cleaning properties[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008,199(1):64-72. |
[38] |
MIHAILOVIC D, SAPONJICZ, MOLINAR, et al. Improved properties of oxygen and argon rf plasma-activated polyester fabrics loaded with TO2 nanopar-ticles[J]. ACS Applied Materials & Interfaces, 2016,2(6):1700-1706.
doi: 10.1021/am100209n pmid: 20524631 |
[1] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[2] | 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14. |
[3] | 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186. |
[4] | 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14. |
[5] | 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
[6] | 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119. |
[7] | 张梦媛, 黄庆林, 黄岩, 肖长发. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(09): 1-7. |
[8] | 田圣男 赵健 陈玲玲 吕仪 孙楠楠 王瑞雪 肖长发. 银/二氧化钛可见光催化自清洁织物的制备及其性能[J]. 纺织学报, 2018, 39(12): 89-94. |
[9] | 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95. |
[10] | 易兵 胡倩 杨辉琼 阳海 李良臣 区泽棠. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(06): 81-88. |
[11] | 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99. |
[12] | 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111. |
[13] | 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100. |
[14] | 贾琳 王西贤 张海霞 覃小红. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017, 38(07): 18-22. |
[15] | 刘婉婉 高强 王阳毅 龙啸云 葛明桥. 聚偏氟乙烯/导电TiO2复合压电薄膜的制备[J]. 纺织学报, 2017, 38(06): 6-10. |
|