纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 101-106.doi: 10.13475/j.fzxb.20191102506

• 染整与化学品 • 上一篇    下一篇

可拉伸聚吡咯/棉针织物的制备及其储电性能

王博, 凡力华, 原韵, 殷允杰, 王潮霞()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2019-11-08 修回日期:2020-06-30 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 王潮霞
  • 作者简介:王博(1992—),男,博士生。主要研究方向为导电织物及其储能应用。
  • 基金资助:
    国家自然科学基金项目(21975107);国家级大学生创新训练项目(201910295070)

Preparation and electric storage performance of stretchable polypyrrole/cotton knitted fabric

WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2019-11-08 Revised:2020-06-30 Online:2020-10-15 Published:2020-10-27
  • Contact: WANG Chaoxia

摘要:

为赋予棉针织物导电和储电的新功能并将其用于可穿戴器件中,将吡咯单体原位聚合到棉针织物上。借助扫描电子显微镜和红外光谱仪对棉针织物和聚吡咯的微观形貌以及化学结构进行表征,并测试了聚吡咯/棉针织物在不同拉伸应变时的表面电阻及电化学性能。结果表明:聚吡咯充分附着在针织棉纤维上;当拉伸应变从0%增至40%时,织物电阻值从429.2 Ω降至231.4 Ω;织物在5 mV/s条件下的储电面积容量为680.6 mF/cm 2,在2 mA/cm2 条件下为1 014.2 mF/cm2;由聚吡咯/棉针织物组装成的对称型超级电容器在1、5 mA/cm2时的面积容量分别为229.8、161.5 mF/cm2,经过10 000次恒流充放电循环后容量保留率为76.3%。

关键词: 导电织物, 应变传感器, 聚吡咯, 棉织物, 电极, 超级电容器

Abstract:

To endow knitted cotton fabrics with new function such as conductance and electricity storage for wearable devices, pyrrole monomers were in-situ polymerized on a knitted cotton fabric to fabricate the polypyrrole/cotton knitted fabric. Scanning electron microscope and Fourier transform infrared spectra were used to detect the morphologies and chemical structures of the polypyrrole/cotton knitted fabric. The surface resistances and the electrochemical performances of polypyrrole/cotton knitted fabric at different tensile strain were also measured. The results show that sufficient polypyrrole is coated on knitted cotton fibers, and the surface resistances decreases from 429.2 Ω to 231.4 Ω when the strain is changed from 0% to 40%. The areal capacitance of the polypyrrole/cotton knitted fabric is 680.6 mF/cm 2 at the scan rate of 5 mV/s, and is 1 014.2 mF/cm2 at the current density of 2 mA/cm2. The symmetric supercapacitor device prepared from the polypyrrole/cotton knitted fabric shows an areal capacitance of 229.8 mF/cm2 at 1 mA/cm2 and 161.5 mF/cm2 at 5 mA/cm2, and this device exhibits a capacitance retention of 76.3% after 10 000 galvanostatic charging/discharging cycles.

Key words: conductive fabric, strain sensor, polypyrrole, cotton fabric, electrode, supercapacitor

中图分类号: 

  • TS106

图1

棉针织物和PPy/棉针织物的表面形貌"

图2

棉针织物和PPy/棉针织物的红外光谱"

图3

PPy/棉针织物在不同应变下的表面电阻及其手指弯曲识别功能"

图4

PPy/棉针织物在三电极测试体系中的电化学性能"

图5

PPy/棉针织物所组装对称型器件在两电极测试体系中的电化学性能"

图6

PPy/棉针织物所组装对称型器件的能量密度与功率密度曲线及容量保留率和库仑效率"

[1] 杨静, 刘艳君. 石墨烯-棉针织物电极材料的制备及其性能[J]. 纺织学报, 2019,40(3):90-95.
YANG Jing, LIU Yanjun. Preparation and properties of graphene-knitted electrode materials[J]. Journal of Textile Research, 2019,40(3):90-95.
[2] 王栋, 卿星, 蒋海青, 等. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018,39(5):150-154.
WANG Dong, QING Xing, JIANG Haiqing, et al. Integration and innovation of fiber materials and wearable technology[J]. Journal of Textile Research, 2018,39(5):150-154.
[3] SARMAH Devalina, KUMAR Ashok. Ion beam modified molybdenum disulfide-reduced graphene oxide/polypyrrole nanotubes ternary nanocomposite for hybrid supercapacitor electrode[J]. Electrochimica Acta, 2019,312:392-410.
doi: 10.1016/j.electacta.2019.04.174
[4] CHEN Yong, ZHANG Xia, XU Cheng, et al. The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites[J]. Electrochimica Acta, 2019,309:424-431.
doi: 10.1016/j.electacta.2019.04.072
[5] 董科, 张玲, 范佳璇, 等. 织物电极监测心电信号与穿戴压力作用机制分析[J]. 纺织学报, 2019,40(9):75-82.
DONG Ke, ZHANG Ling, FAN Jiaxuan, et al. Action mechanism of wearing pressure on electrocardiogram monitoring of woven fabric electrodes[J]. Journal of Textile Research, 2019,40(9):75-82.
doi: 10.1177/004051757004000111
[6] 陈阳, 张占柱. 石墨烯用于棉织物防静电整理的研究[J]. 棉纺织技术, 2019,47(1):35-38.
CHEN Yang, ZHANG Zhanzhu. Study of graphene used for the anti-static finishing of cotton fabric[J]. Cotton Textile Technology, 2019,47(1):35-38.
[7] LV Jingchun, ZHOU Peiwen, ZHANG Linping, et al. High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method[J]. Chemical Engineering Journal, 2019,361:897-907.
doi: 10.1016/j.cej.2018.12.083
[8] LI Xin, SUN Chao, CAI Zaisheng, et al. High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric[J]. Applied Surface Science, 2019,473:967-975.
doi: 10.1016/j.apsusc.2018.12.244
[9] 何青青, 徐红, 毛志平, 等. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019,40(10):113-119.
HE Qingqing, XU Hong, MAO Zhiping, et al. Preparation of high-electrical conductivity polypyrrole-coated fabrics[J]. Journal of Textile Research, 2019,40(10):113-119.
[10] KULANDAIVALU Shalini, SUHAIMI Nadhrah, SULAIMAN Yusran. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material[J]. Scientific Reports, 2019,9(1):4884.
doi: 10.1038/s41598-019-41203-3 pmid: 30894621
[11] SHIVAKUMARA S, MUNICHANDRAIAH N. In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2019,787:1044-1050.
doi: 10.1016/j.jallcom.2019.02.131
[12] SUN Chao, LI Xin, CAI Zaisheng, et al. Carbonized cotton fabric in-situ electrodeposition polypyrrole as high-performance flexible electrode for wearable supercapacitor[J]. Electrochimica Acta, 2019,296:617-626.
doi: 10.1016/j.electacta.2018.11.045
[13] KULANDAIVALU Shalini, SULAIMAN Yusran. Designing an advanced electrode of mixed carbon materials layered on polypyrrole/reduced graphene oxide for high specific energy supercapacitor[J]. Journal of Power Sources, 2019,419:181-191.
doi: 10.1016/j.jpowsour.2019.02.079
[14] YUN Junyeong, SONG Changhoon, LEE Hanchan, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor[J]. Nano Energy, 2018,49:644-654.
doi: 10.1016/j.nanoen.2018.05.017
[15] YUE Binbin, WANG Caiyun, DING Xin, et al. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor[J]. Electrochimica Acta, 2013,113:17-22.
doi: 10.1016/j.electacta.2013.09.024
[16] HU Liangbing, PASTA Mauro, MANTIA Fabio La, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Letters, 2010,10(2):708-714.
doi: 10.1021/nl903949m pmid: 20050691
[17] YUE Binbin, WANG Caiyun, DING Xin, et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications[J]. Electrochimica Acta, 2012,68:18-24.
doi: 10.1016/j.electacta.2012.01.109
[18] DONG Liubing, LIANG Gemeng, XU Chengjun, et al. Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability[J]. Journal of Materials Chemistry A, 2017,5(37):19934-19942.
doi: 10.1039/C7TA06135H
[19] YU Miao, HAN Yingying, LI Yao, et al. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors[J]. Carbohydrate Polymers, 2018,199:555-562.
doi: 10.1016/j.carbpol.2018.04.058 pmid: 30143162
[20] WANG Siliang, LIU Nishuang, RAO Jiangyu, et al. Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems[J]. Journal of Materials Chemistry A, 2017,5(42):22199-22207.
doi: 10.1039/C7TA06306G
[21] BAI Yang, LIU Rong, LI Enyuan, et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications[J]. Journal of Alloys and Compounds, 2019,777:524-530.
doi: 10.1016/j.jallcom.2018.10.376
[22] ZHANG Yan, JI Tengxiao, HOU Shihui, et al. All-printed solid-state substrate-versatile and high-performance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing[J]. Journal of Power Sources, 2018,403:109-117.
doi: 10.1016/j.jpowsour.2018.09.096
[23] BARAKZEHI Marjan, MONTAZER Majid, SHARIF Farhad, et al. A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole com-posite[J]. Electrochimica Acta, 2019,305:187-196.
doi: 10.1016/j.electacta.2019.03.058
[1] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[2] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[3] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[4] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[5] 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
[6] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[7] 韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶, 劳继红, 王璐. 医用敷料用柔性金属电极的制备及其细胞毒性分析[J]. 纺织学报, 2020, 41(09): 174-182.
[8] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[9] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[10] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[11] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[12] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[13] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[14] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[15] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!