纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 23-28.doi: 10.13475/j.fzxb.20191102606

• 纤维材料 • 上一篇    下一篇

再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测

刘思佳, 喻倩, 王锐, 孔宪明()   

  1. 辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001
  • 收稿日期:2019-11-08 修回日期:2020-04-16 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 孔宪明
  • 作者简介:刘思佳(1995—),女,硕士生。主要研究方向为纤维素功能材料的制备与光谱应用。
  • 基金资助:
    辽宁省教育厅基金项目(L2019011);辽宁省自然科学基金项目(20180550246)

Preparation of flexible Au nanoparticle decorated regenerated regenerated cellulose fiber compound and quickly detection of Nile Blue

LIU Sijia, YU Qian, WANG Rui, KONG Xianming()   

  1. School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China
  • Received:2019-11-08 Revised:2020-04-16 Online:2020-07-15 Published:2020-07-23
  • Contact: KONG Xianming

摘要:

为获得柔性纤维素基表面增强拉曼光谱(SERS)增强基底,以从废纸中再生的纤维素纤维为固相载体,经表面改性后通过自组装将纳米金粒子负载到纤维素纤维表面得到再生纤维素纤维-纳米金复合物。借助紫外-可见光光谱仪、红外光谱仪、透射电子显微镜、扫描电子显微镜及光学显微镜对再生纤维素纤维及再生纤维素纤维-纳米金复合物进行表征,并利用时域有限差分法对SERS基底中纳米金的电场强度变化进行模拟。表面改性后纤维素纤维在干燥和湿润条件下的平均直径分别为28.21和42.29 μm,利用直径变化这一特点可调控纤维表面纳米金粒子间距获得更多的SERS热点。该柔性SERS基底光谱均一性的相对标准偏差为3.5%,其对环境污染物尼尔兰分子的检出限达到1×10-9 mol/L。

关键词: 再生纤维素纤维, 纳米金, 表面增强拉曼光谱基底, 柔性复合物, 尼尔兰检测

Abstract:

In order to obtain the flexible cellulose surface-enhanced Raman spectroscopy(SERS)substrate, an active and flexible SERS substrate was fabricated by decorating Au nanoparticles on the surface of regenerated cellulose fiber, where the cellulose fiber was regenerated from waste paper and used as solid support. Glycidyltrimethylammonium chloride was used to graft positive charge onto the surface of fibers, and citrate-capped Au nanoparticles were assembled via electrostatic interaction. Ultroviolet-vis absorption spectra, Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, X-ray diffraction and optical microscopy were used to characterize the features of the regenerated cellulose fibers and fiber-Au nanopartides nanocomposites, finite-difference time-domain theoretical simulations were also developed to evaluate the local electromagnetic fields of Au nanopartides. After surface modification, the diameters of the cellulose fiber were 28.21 and 42.29 μm respectively. The variation of diameter can be utilized to control the gap between Au nanoparticles and more hot spots for SERS are produced. The standard deviation of uniformity of SERS spectra of this flexible SERS substrate is 3.5%. Furthermore, this cellulose fiber-Au nanocomposite is used for Nile Blue pollutant SERS sensing and the sensitivity of Nile Blue detection is achieved 1×10-9 mol/L.

Key words: regenerated cellulose fiber, Au nano particle, surface-enhanced Raman spectroscopy substrate, flexible compound, Nile Blue detection

中图分类号: 

  • O636.9

图1

纳米金颗粒紫外-可见光谱图"

图2

纳米金颗粒的透射电镜照片 (×100 000)"

图3

GTAC改性前后再生纤维素纤维的红外光谱图"

图4

GTAC改性再生纤维素纤维在干湿条件下的显微镜照片"

图5

再生纤维素纤维-纳米金复合物的SERS谱图及强度统计图"

图6

再生纤维素纤维、纳米金及再生纤维素纤维-纳米金复合物的扫描电镜照片"

图7

纳米金局域电场强度分布图 注:x、z为纳米金粒子的空间分布。"

图8

纤维素纤维-纳米金复合物对不同浓度的PATP和尼尔兰的SERS光谱图"

[1] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010,110(6):3479-3500.
pmid: 20201500
[2] HUBBE M A, ROJAS O J, LUCIA L A, et al. Cellulosic nanocomposites: a review[J]. Bioresourses, 2008,3(3):929-980.
[3] HAURU L K J, HUMMELl M, SIXTA H, et al. Cellulose regeneration and spinnability from ionic liquids[J]. Soft Matter, 2016,12:1487-1495.
pmid: 26660047
[4] MA Y, HUMMELl M, MAATTANEN M, et al. Upcycling of waste paper and cardboard to textiles[J]. Green Chemistry, 2016,18:858-866.
[5] XIONG Z, CHEN X, LIOU P, et al. Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS[J]. Cellulose, 2017,24(7):2801-2811.
[6] KONG X M, REZA M, MA Y B, et al. Assembly of metal nanoparticles on regenerated fibers from wood sawdust and deinked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications[J]. Cellulose, 2015(22):3645-3655.
[7] FAN W, LEE Y H, PEDIREDDY S, et al. Grapheneo xide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface enhanced Raman scattering (SERS) sensing[J]. Nanoscale, 2014,6(9):4843-4851.
pmid: 24664184
[8] PORTER M D, LIPERT R J, SIPERKO L M, et al. SERS as a bioassay platform: fundamentals, design, and applications[J]. Chemical Society Reviews, 2008,37(5):1001-1011.
pmid: 18443685
[9] BANHOLZER M J, MILLSTONE J E, QIN L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008,37(5):885-897.
doi: 10.1039/b710915f pmid: 18443674
[10] LEE P C, MEISEL D. Adsorption and surface enhanced raman of dyes on silver and gold sols[J]. Physical Chemistry, 1982(86):3391-3395.
[11] GRABAR K C, FREEMAN R G, HOMMERR M B, et al. Preparation and characterization of Au colloid monolayers[J]. Anal Chem, 1995(67):735-743.
[12] CASTELLANOS L J, C BLANCO T, HINESTROZA J P, et al. In situ synjournal of gold nanoparticles using fique natural fibers as template[J]. Cellulose, 2012(19):1933-1943.
[13] YU Q, KONG X M, MA Y B, et al. Multi-functional regenerated cellulose fibers decorated with plasmonic Au nanoparticles for colorimetry and SERS assays[J]. Cellulose, 2018,10:6041-6053.
[14] HENGLEIN A, GIERSIG M. Formation of colloidal silver nanoparticles: capping action of citrate[J]. The Journal of Physical Chemistry, 1999,103:9533-9539.
[15] CHEN Huaxiang, YOU Tingting, XU Geng, et al. Humidity-responsive nanocomposite of gold nanoparticles and polyacrylamide brushes grafted on Ag film: synjournal and application as plasmonic nanosensor[J]. Science China Materials, 2018,61:1201-1208.
[16] ZHOU Y, ZHI J, ZHAO J, et al. Surface-enhanced Raman scattering of 4-aminothiophenol adsorbed on silver nanosheets deposited onto cubic boron nitride films[J]. Anal Sci, 2010,26(9):957-961.
doi: 10.2116/analsci.26.957 pmid: 20834126
[17] REIGUE A, AUGUIE B, ETCHEGOIN P G, et al. CW measurements of resonance Raman profiles, line widths, and cross-sections of fluorescent dyes: application to Nile Blue A in water and ethanol[J]. Journal of Raman Spectroscopy, 2013,44(4):573-581.
[1] 卢琳娜 陈宇岳 李永贵. 纳米金与粘胶纤维的吸附机制[J]. 纺织学报, 2018, 39(09): 22-28.
[2] 史晨 侯雪斌 晋阳 葛明桥. 长余辉发光再生纤维素纤维的制备[J]. 纺织学报, 2016, 37(12): 1-5.
[3] 周蓉 杨明霞 刘杰. 新型再生纤维素纤维纱线性能的综合评价[J]. 纺织学报, 2013, 34(3): 35-39.
[4] 哈丽丹买买提;吾满江艾力. 纤维素氨基甲酸酯纤维纺丝工艺探讨[J]. 纺织学报, 2009, 30(02): 5-8.
[5] 张建春;施楣梧;刘巍;姚穆. Lyocell纤维的热学性能研究[J]. 纺织学报, 2000, 21(03): 6-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!