纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 21-26.doi: 10.13475/j.fzxb.20191104506

• 纤维材料 • 上一篇    下一篇

吸水树脂吸液性能研究

王凤龙, 王建明(), 周羿恬, 赵明会   

  1. 北京服装学院 材料设计与工程学院, 北京 100029
  • 收稿日期:2019-11-20 修回日期:2020-06-06 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 王建明
  • 作者简介:王凤龙(1993—),男,硕士。主要研究方向为功能纺织品研发与评价。

Study on liquid absorption performance of water absorbing resin

WANG Fenglong, WANG Jianming(), ZHOU Yitian, ZHAO Minghui   

  1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2019-11-20 Revised:2020-06-06 Online:2020-09-15 Published:2020-09-25
  • Contact: WANG Jianming

摘要:

为探究吸水树脂吸液性能的影响因素,首先借助扫描电子显微镜、红外光谱仪对吸水树脂的结构进行分析,然后研究了时间、温度对吸水树脂在水和模拟酸、碱汗液中吸液倍率、保水性能的影响,最后探讨了吸水树脂的重复吸液能力。结果表明:吸水树脂表面有大量凸起结构,具有较大比表面积,从而加快了其吸液速率;吸水树脂中含有亲水性酰胺基,其在去离子水和模拟酸、碱汗液中的最大吸液倍率分别约为265、50、50 g/g;影响吸水树脂吸液能力的主要因素是模拟汗液中钠离子的浓度,钠离子浓度越高其吸液能力越差,酸碱性、温度对最大吸液倍率影响较小,但温度对吸水树脂的吸液速率有影响,温度越高吸液速率越快;循环使用10次后,吸水树脂在模拟酸、碱汗液中的吸液率仍可达到87%以上。

关键词: 吸水树脂, 吸液性能, 保水性能, 模拟汗液, 个体防护服

Abstract:

In order to investigate the factors that affect the liquid absorption performance of water-absorbent resins, the structure of water absorbent resin was analyzed by means of scanning electron microscope and infrared spectrometer firstly. The time and temperature effects on the absorbency and water retention of water absorbent resin in water, simulated acid and alkali sweat were also explored. Analysis and discussions were carried out on the repeated absorbency of water absorbent resin. The results show that the surface of the absorbent resin has a large number of convex structures leading to a large specific surface area, increasing the liquid-absorption rate of the water-absorbent resin. The water-absorbent resin contains amide groups, and when submerged in deionized water and simulated sweat the maximum liquid absorption rates reach about 265, 50 and 50 g/g, respectively. The liquid absorption is influenced by the concentration of sodium ions in sweat, and the larger the concentration the worse the liquid absorption capacity. The acidity, alkalinity and temperature have little effect on the maximum absorption rate, but the temperature affects the water absorption rate in that the higher the temperature, the higher the liquid absorption rate, and the smaller the maximum liquid absorption rate. After 10 cycles of absorption loading, the liquid absorption rate of water-absorbent resin in the simulated sweat still reaches 87%.

Key words: water absorbing resin, liquid absorption performance, water retention, simulated sweat, personal protective clothing

中图分类号: 

  • TQ326.4

表1

模拟酸、碱汗液配方"

汗液名称 C6H9N3O2·HCl NaCl NaH2PO4·2H2O Na2HPO4·2H2O
模拟酸汗液 0.50 5.00 2.20 0.00
模拟碱汗液 0.50 5.00 0.00 2.50

表2

不同浓度的模拟酸汗液配方"

汗液浓度 C6H9N3O2·HCl·H2O NaCl NaH2PO4·2H2O
1.0倍浓度 0.50 5.00 2.20
1.5倍浓度 0.75 7.50 3.30
2.0倍浓度 1.00 10.00 4.40
2.5倍浓度 1.25 12.50 5.50
3.0倍浓度 1.50 15.00 6.60

表3

不同浓度的模拟碱汗液配方"

汗液浓度 C6H9N3O2·HCl·H2O NaCl Na2HPO4·2H2O
1.0倍浓度 0.50 5.00 2.50
1.5倍浓度 0.75 7.50 3.75
2.0倍浓度 1.00 10.00 5.00
2.5倍浓度 1.25 12.50 6.25
3.0倍浓度 1.50 15.00 7.50

图1

吸水树脂的红外光谱图"

图2

吸水树脂吸水前后扫描电镜照片(×300)"

图3

不同温度去离子水、模拟酸汗液、模拟碱汗液对吸水树脂吸液倍率的影响"

图4

不同浓度模拟酸汗液和模拟碱汗液对吸液倍率的影响"

图5

氯化钠质量浓度对吸液倍率的影响"

图6

模拟酸蛋白和模拟碱蛋白对吸液倍率的影响"

图7

吸水树脂重复吸水性"

[1] KJELLSTROMT, HOLMER I, LEMKE B. Workplace heat stress, health and prodiictivity an increasing challenge for low and middle-income countries during climate change[J]. Health Action, 2009,2(1):46-51.
[2] 韩增旺, 唐世君, 赖军. 国内外冷却服装的发展现状及关键技术[J]. 中国个体防护装备, 2009(4):11-14.
HAN Zengwang, TANG Shijun, LAI Jun. Development status and key technologies of cooling garments at home and abroad[J]. China Personal Protective Equipment, 2009(4):11-14.
[3] 李利娜, 钱晓明, 徐杰. 冷却服装的发展现状及应用[J]. 中国个体防护装备, 2008(2):20-21.
LI Lina, QIAN Xiaoming, XU Jie. The development status and application of cooling garments[J]. China Personal Protective Equipment, 2008(2):20-21.
[4] 陈柔曦. 基于相变材料热缓冲作用的高温防护服设计[D]. 苏州:苏州大学, 2013:1-30.
CHEN Rouxi. Design of high temperature protective clothing based on the thermal buffering effect of phase change materials[D]. Suzhou: Soochow University, 2013:1-30.
[5] 何骞. 基于相变材料的个体冷却服及其降温性能研究[D]. 西安:西安科技大学, 2018:2-3.
HE Qian. Research on individual cooling suit based on phase change material and its cooling performance [D]. Xi'an: Xi'an University of Science and Technology, 2018:2-3.
[6] 张富丽. 热防护服的微气候冷却系统综述[J]. 中国个体防护装备, 2002(3):29-30.
ZHANG Fuli. Overview of microclimate cooling system for thermal protective clothing[J]. China Personal Protective Equipment, 2002 (3):29-30.
[7] GAO C, KUKLANE K, HOLMER I. Cooling vests with phase change materials: the effects of melting temperature on heat strain allwviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011,111(6):1207-1216.
pmid: 21127896
[8] 张东霞. 相变材料在调温服装中的应用研宄[D]. 北京:北京服装学院, 2006: 2-15.
ZHANG Dongxia. Research on the application of phase change materials in tempering clothing[D]. Beijing: Beijing Institute of Fashion Technology, 2006: 2-15.
[9] 方贵银, 邢琳, 杨帆, 等. 相变蓄冷材料制备及热性能研究[J]. 低温与超导, 2006,34(1):68-70.
FANG Guiyin, XING Lin, YANG Fan, et al. Study on Preparation and thermal performance of phase change cold storage materials[J]. Low Temperature and Superconductivity, 2006,34(1):68-70.
[10] 李夔宁, 郭宁宁, 王贺. 有机相变蓄冷复合材料的研究[J]. 化工新型材料, 2009,37(4):87-88.
LI Yanning, GUO Ningning, WANG He. Research on organic phase change cold storage composites[J]. New Chemical Materials, 2009,37(4):87-88.
[11] SONG H S, KWON O S, KIM J H, et al. 3D hydrogel scaffold doped with 2D graphene materials forbiosensors and bioelectronics.[J]. Biosensors & Bioelectronics. 2016,89:187.
pmid: 27020065
[12] 张泽. 丙烯酸—衣康酸共聚吸水性材料的制备与性能研究[D]. 武汉:武汉工程大学, 2015:3-8.
ZHANG Ze. Preparation and properties of acrylic acid-itaconic acid copolymer water-absorbing materials[D]. Wuhan:Wuhan University of Technology, 2015:3-8.
[13] 吴振刚. 高吸水性树脂的合成、改性研究[D]. 西安:第四军医大学, 2008:1-25.
WU Zhengang. Synthesis and modification of superabsorbent resin [D]. Xi'an:Fourth Military Medical University, 2008:1-25.
[14] 张小红. 高吸水性树脂的结构设计与性能研究[D]. 西安:西北工业大学, 2006:3-27.
ZHANG Xiaohong. Structural design and properties of super absorbent resin [D]. Xi'an:Northwestern Polytechnical University, 2006:3-27.
[15] 袁昆. 高分子水凝胶材料及吸水膨胀弹性体的制备与性能研究[D]. 兰州:西北师范大学, 2005:1-19.
YUAN Kun. Preparation and properties of polymer hydrogel materials and water-swellable elastomers[D]. Lanzhou:Northwest Normal University, 2005:1-19.
[1] 董艳 刘呈坤 孙润军 陈美玉 杨旋. 静电纺纳米纤维束的吸水保水及芯吸性能[J]. 纺织学报, 2015, 36(08): 11-15.
[2] 张袁松 蒋瑜春 陈丽嫚 黄迅 王蜀 刘祖兰 . 西瓜纤维素的提取及其吸液性能[J]. 纺织学报, 2014, 35(1): 13-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!