纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 1-7.doi: 10.13475/j.fzxb.20191106007

• 纤维材料 •    下一篇

石墨烯纤维的湿法纺丝制备及其性能

庞雅莉1,2, 孟佳意1,2, 李昕1,2(), 张群1,2, 陈彦锟1,2   

  1. 1.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    2.北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2019-11-26 修回日期:2020-06-12 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 李昕
  • 作者简介:庞雅莉(1967—),女,讲师,硕士。主要研究方向为基础及纺织化学的教学及个体防刺服、智能纺织品和导电纤维。
  • 基金资助:
    国家自然科学基金项目(51873003);北京市教委科技重点项目(KZ201910012015);北京市属高等学校高层次人才引进与培养计划项目(CTT&TCD20180321);北京市教委科技一般项目(KM202010012003)

Preparation of graphene fibers by wet spinning and fiber characterization

PANG Yali1,2, MENG Jiayi1,2, LI Xin1,2(), ZHANG Qun1,2, CHEN Yankun1,2   

  1. 1. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Engineering Research Center of Textile Nanofiber, Beijing 100029, China
  • Received:2019-11-26 Revised:2020-06-12 Online:2020-09-15 Published:2020-09-25
  • Contact: LI Xin

摘要:

为制备兼具导电性和柔韧性的石墨烯纤维,首先采用改进的Hummers法制备氧化石墨烯,然后以氧化石墨烯溶液为纺丝液,CaCl2的乙醇溶液为凝固浴,通过湿法纺丝后经氢碘酸还原制备得到石墨烯纤维;并以羧甲基纤维素为交联剂对石墨烯纤维进行改性处理,得到交联石墨烯纤维。最后对2种石墨烯纤维的表面形态、导电性和力学性能进行测试与分析,并初步应用。结果表明:制备的氧化石墨烯含氧量为31.37%,单片层厚度为0.88 nm;2种石墨烯纤维表面均较光滑,交联石墨烯纤维内部片层排列更加紧密,其电导率达124 S/cm,与交联前的石墨烯纤维相差不大,但拉伸强度由交联前的120 MPa增加至179 MPa;单根交联石墨烯纤维作为电路导线可点亮灯泡,且可任意弯曲打结编织成花瓣及平纹网状结构。

关键词: 石墨烯, 湿法纺丝, 导电纤维, 导电性, 力学性能, 智能纺织品

Abstract:

In order to prepare graphene fiber with both conductivity and flexibility, the soluble graphene oxide was prepared through modified Hummers method. The graphene oxide solution was used as the spinning solution, and the CaCl2 ethanol solution as the coagulation bath. The graphene fiber was obtained by hydroiodic reduction via wet spinning. The fiber was treated with carboxymethylcellulose as cross-linking agent to obtain cross-linked graphene fiber for comparison. The surface morphology, electrical conductivity and mechanical properties of the two graphene fibers were characterized for preliminary applications. The results show that the prepared graphene oxide fiber has an oxygen content of 31.37% and a monolayer thickness of 0.88 nm. Besides, the surfaces of the two types of graphene fibers are smooth, but the inner layers of the cross-linked graphene fiber are arranged more closely with the conductivity of 124 S/cm, which is similar to the conductivity of the graphene fiber before crosslinking. However, the tensile strength is significantly increased from 120 MPa to 179 MPa after crosslinking. The single cross-linked graphene fiber can be used as a circuit wire to light the bulb, and can be arbitrarily bent and knotted to form a petal and a plain mesh structure.

Key words: graphene, wet spinning, conductive fiber, conductivity, mechanical property, smart textiles

中图分类号: 

  • TS102.5

图1

CMC与rGO纤维交联机制示意图"

图2

氧化石墨烯粉末的原子力显微镜照片"

图3

石墨及GO粉末的X射线衍射谱图"

图4

石墨、GO粉末、rGO纤维的红外光谱图"

图5

GO粉末、rGO纤维的光电子能谱图"

表1

GO粉末和rGO纤维中不同元素的含量"

样品名称 C O N S I
GO粉末 65.57 31.37 1.79 1.27
rGO纤维 83.46 14.55 1.68 0.32

图6

石墨、GO粉末和rGO纤维的拉曼光谱图"

图7

交联前后rGO纤维的截面扫描电镜照片"

图8

交联前后rGO纤维的拉伸曲线"

图9

交联rGO纤维编织成不同形状照片"

图10

交联rGO纤维作为导线点亮灯泡"

[1] 杨俊杰, 张扬, 陈国印, 等. 石墨烯纤维的制备与应用[J]. 中国材料进展, 2018,37(5):357-365.
YANG Junjie, ZHANG Yang, CHEN Guoyin, et al. Graphene fiber: preparation and application[J]. Materials China, 2018,37(5):357-365.
[2] JALILI R, ABOUTALEBI S H, ESRAFILZADEH D, et al. Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013,23(43):5345-5354.
doi: 10.1002/adfm.201300765
[3] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):170-177.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of graphene composite fibers and fabrics[J]. Journal of Textile Research, 2016,37(10):170-177.
[4] YANG Z B, SUN H, CHEN T, et al. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency[J]. Angewandte Chemie, 2013,125(29):7545-7548.
[5] 史妍, 曲良体. 石墨烯纤维研究进展[J]. 科技导报, 2015,33(3):99-104.
doi: 10.3981/j.issn.1000-7857.2015.03.017
SHI Yan, QU Liangti. Recent progressin graphene fibers research[J]. Science Technology Review, 2015,33(3):99-104.
[6] XU Z, GAO C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011,2:571-579.
pmid: 22146390
[7] XU Z, LIU Z, SUN H, et al. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors[J]. Advanced Materials, 2013,25(23):3249-3253.
pmid: 23640822
[8] SANG S Y, KANG E L, CHA H J, et al. Highly conductive graphene/Ag hybrid fibers for flexible fiber-type transistors[J]. Scientific Reports, 2015,5:16366.
doi: 10.1038/srep16366 pmid: 26549711
[9] ZHONG X, WANG R, YANG W, et al. Carbon nanotube and graphene multiple-thread yarns[J]. Nanoscale, 2013,5(3) : 1183-1187.
doi: 10.1039/c2nr32735j pmid: 23299393
[10] LI X M, ZHAO T S, WANG K L, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties[J]. Langmuir, 2011,27(19) : 12164-12171.
pmid: 21875131
[11] CHENG H, DONG Z, HU C, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013,5(8) : 3428-3434.
doi: 10.1039/c3nr00320e pmid: 23475309
[12] DONG Z, JIANG C, CHENG H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012,24(14):1856-1861.
doi: 10.1002/adma.v24.14 pmid: 22415895
[13] SHENG L, WEI T, LIANG Y, et al. Ultra-high toughness all graphene fibers derived from synergetic effect of interconnected graphene ribbons and graphene sheets[J]. Carbon, 2017,120:17-22.
[14] CHEN L L, LIU Y, ZHAO Y, et al. Graphene-based fibers for supercapacitor applications[J]. Nanotechnology, 2016,27(3):1-16.
[15] 张克勤, 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016,37(10):155.
ZHANG Keqin, DU Dezhuang. Functional fibers based on graphene[J]. Journal of Textile Research, 2016,37(10):155.
[16] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of The American Chemical Society, 1958,80(6):1339-1339.
[17] QI Y C, YANG M L, XU W H, et al. Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions[J]. Journal of Colloid and Interface Science, 2016,486:84-96.
pmid: 27693553
[18] ROURKE J P, PANDEY P A, MOORE J J, et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie International Edition, 2011,50(14):3173-3177.
pmid: 21432951
[19] 李昕, 廖佳星, 王万金, 等. 石墨烯纤维的湿法纺丝制备及性能研究[J]. 北京服装学院学报, 2017,37(1):27-30.
LI Xin, LIAO Jiaxing, WANG Wanjin, et al. Preparation and properties of graphene fibers prepared by wet-spinning[J]. Journal of Beijing Institute of Fashion Technology, 2017,37(1):27-30.
[20] 孟佳意, 李昕, 龚龑, 等. 石墨烯基光子晶体纤维的制备及性能调控[J]. 高分子学报, 2018,3:389-394.
MENG Jiayi, LI Xin, GONG Yan, et al. Preparation and performance adjustment of graphene-based photonic crystal fibers[J]. Acta Polymerica Sinica, 2018,3:389-394.
[21] 陈政龙, 潘恒沛, 高灵清. 石墨烯常用表征方法[J]. 理化检验(物理分册), 2018,54:89-96.
CHEN Zhenglong, PAN Hengpei, GAO Lingqing. Common characterization methods of graphene[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2018,54:89-96.
[22] 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014,72(3):301-318.
doi: 10.6023/A13090936
WU Juanxia, XU Hua, ZHANG Jin. Raman spectroscopy of graphene[J]. Acta Chimica Sinica, 2014,72(3):301-318.
doi: 10.6023/A13090936
[23] DAS A, CHAKRABORTY B, SOOD A K. Raman spectroscopy of graphene on different substrates and influence of defects[J]. Bulletin of Materials Science, 2008,31:579.
doi: 10.1007/s12034-008-0090-5
[24] 李秀婷, 应豪, 陈姗姗. 拉曼光谱法表征石墨烯晶界[J]. 曲靖师范学院学报, 2017,36(6):18-22.
LI Xiuting, YING Hao, CHEN Shanshan. Characterization of grain boundaries in graphene by raman spectroscopy[J]. Journal of Qujing Normal University, 2017,36(6):18-22.
[25] LI B, ZHOU L, WU D, et al. Photochemical chlorination of graphene[J]. ACS Nano, 2011,5:5957.
doi: 10.1021/nn201731t pmid: 21657242
[26] 胡晓珍. 石墨烯功能化及宏观组装仿贝壳纤维[D]. 杭州:浙江大学, 2014: 6.
HU Xiaozhen. Graphene: functionalization and macroscopic assembled nacre-mimic fibers[D]. Hangzhou: Zhejiang University, 2014: 6.
[1] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/ 聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[2] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[3] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[4] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/ 光敏树脂复合材料的3D 打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[5] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[6] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[7] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[8] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[9] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[10] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[11] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/ 氧化纤维素/ 南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[12] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[13] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[14] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[15] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!