纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 9-14.doi: 10.13475/j.fzxb.20191202306

• 纤维材料 • 上一篇    下一篇

超高分子量聚乙烯纤维的热力学稳定性能

展晓晴, 李凤艳(), 赵健, 李海琼   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2019-12-09 修回日期:2020-03-21 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 李凤艳
  • 作者简介:展晓晴(1995—),女,硕士生。主要研究方向为防刺纺织品。
  • 基金资助:
    国家自然科学基金项目(51403152)

Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber

ZHAN Xiaoqing, LI Fengyan(), ZHAO Jian, LI Haiqiong   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-12-09 Revised:2020-03-21 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Fengyan

摘要:

针对超高分子量聚乙烯(UHMWPE)纤维熔点低、易蠕变等不足,以油田井下作业环境为测试条件,研究了UHMWPE纤维在干热和湿热状态下的力学稳定性能,借助差示扫描量热仪、热重分析仪、扫描电子显微镜、X射线衍射仪和电子能谱分析仪,表征并分析了UHMWPE纤维的热学性能和微观结构。结果表明:UHMWPE纤维表面在热和处理液的刻蚀作用下产生明显的沟槽;在相同的温度下处理,湿热状态下纤维的力学性能损失比干态下小,尤其在70 ℃下湿热连续处理30 d,纤维强力下降率基本控制在6%以内;对纤维进行干热处理,当温度接近纤维熔点时,随着温度的升高,纤维强力下降明显,140 ℃下干热处理1 h,强力最大下降率达19.87%。

关键词: 超高分子量聚乙烯纤维, 热稳定性能, 力学性能, 油田作业, 高性能纤维

Abstract:

Aiming at low melting point and easy creeping of ultrahigh molecular weight polyethy-lene (UHMWPE) fiber, the mechanical properties of UHMWPE at dry and wet heating was investigated, simulating the oilfield underground operation as the measurement conditions. The differential scanning calorimeter, thermal gravity, scanning electron microscopy, X-ray diffraction analyzer and energy dispersive spectrometer were used to characterize and analyze the heating property and microscopic images. The results show that with the etching by heat and treatment solution, obvious groove appears on the surface of the UHMWPE fibers. When treated with the same temperature, the loss in mechanical property is lower at wet heating than that at dry heating, especially when the fibers are wet heated at 70 ℃ for 30 d, the decrease of fibers strength could be controlled within 6%. However, with the increase of treatment temperature at a dry environment, the fibers strength decreases significantly, and particularly when the fibers are dry heated at 140 ℃ for 1 h, the maximum strength loss reaches 19.87%.

Key words: ultrahigh molecular weight polyethylene fiber, thermal stability, mechanical property, oilfield underground operation, high-performance fiber

中图分类号: 

  • TS101.3

图1

超高分子量聚乙烯纤维的热力学性能"

表1

70 ℃下湿热处理不同时间UHMWPE纤维的力学性能"

处理时
间/d
断裂强
度/MPa
断裂强度
变化率/%
断裂伸长
率/%
断裂伸
长率变
化率/%
0 4 516±4.17 4.27±0.24
3 4 420±4.17 -2.1 4.80±0.44 +12.40
6 4 257±4.17 -5.7 4.30±0.13 +0.70
9 4 338±4.17 -3.9 4.48±0.15 +4.80
12 4 250±5.22 -5.9 4.76±0.19 +11.50
15 4 388±4.17 -2.8 4.93±0.13 +15.50
18 4 468±4.17 -1.1 4.77±0.14 +11.70
21 4 451±3.13 -1.4 4.85±0.09 +13.60
24 4 455±3.83 -1.4 4.83±0.11 +13.10
27 4 262±4.17 -5.6 4.56±0.11 +6.80
30 4 303±4.17 -4.7 4.52±0.16 +5.90

图2

处理不同时间的UHMWPE纤维X射线衍射图谱"

表2

处理不同时间UHMWPE纤维的结晶结构数据"

样品名称 2θ/(°) 半峰全宽 结晶度/%
UHMWPE原样 21.4 0.607 95.33
23.9 0.719
处理21 d 21.4 0.677 89.47
23.9 0.737
处理30 d 21.4 0.546 92.76
23.9 0.602

图3

湿热处理温度对UHMWPE纤维力学性能的影响"

表3

UHMWPE纤维中金属元素含量"

样品名称 Na Mg
UHMWPE原样 0.21 0.10
80 ℃处理 0.25 0.15
140 ℃处理 0.55 0.14

图4

湿热处理前后UHMWPE纤维的微观形貌照片(×1 800)"

图5

不同温度下干热处理UHMWPE纤维力学性能"

图6

不同时间下干热处理前后UHMWPE纤维力学性能"

图7

130 ℃干热处理不同时间UHMWPE纤维的微观形貌照片(×1 800)"

[1] 范立冬, 张治钢, 肖南, 等. 自然老化对超高分子量聚乙烯材料防护性能影响的实验研究[J]. 中国个体防护装备, 2018(1):36-39.
FAN Lidong, ZHANG Zhigang, XIAO Nan, et al. Experimental study on the effect of natural ageing on the protective performance of ultrahigh molecular weight polyethylene[J]. China Personal Protective Equipment, 2018(1):36-39.
[2] 陈磊, 徐志伟, 李嘉禄, 等. 防弹复合材料结构及其防弹机理[J]. 材料工程, 2010(11):94-100.
CHEN Lei, XU Zhiwei, LI Jialu, et al. Structure and bullet-proof mechanism of ballistic composites[J]. Journal of Materials Engineering, 2010(11):94-100.
[3] 肖文莹, 郭万涛, 李想. 超高分子量聚乙烯纤维增强防弹复合材料研究进展[J]. 材料开发与应用, 2019,34(2):131-138.
XIAO Wenying, GUO Wantao, LI Xiang. The progress of UHMWPE fiber-reinforced ballistic composites[J]. Development and Application of Material, 2019,34(2):131-138.
[4] 徐晨光, 孟家光, 魏冬, 等. 超高分子量聚乙烯纤维防割手套的性能综合分析[J]. 纺织科学与工程学报, 2019,36(3):24-27.
XU Chenguang, MENG Jiaguang, WEI Dong, et al. Performance comprehensive analysis of ultrahigh molecular weight polyethylene fiber cut-resistant gloves[J]. Journal of Textile Science & Engineering, 2019,36(3):24-27.
[5] LI Wei, XIONG Dangsheng, ZHAO Xiaoduo, et al. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid[J]. Materials & Design, 2016(102):162-167.
[6] 张恒, 甄琪, 钱晓明, 等. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018,39(4):63-68.
ZHANG Heng, ZHEN Qi, QIAN Xiaoming, et al. Preparation and moisture permeability of ultra-high molecular weight polyethylene flexible stab-resistant composite with dendritic structure[J]. Journal of Textile Research, 2018,39(4):63-68.
[7] 邢京京, 钱晓明, 黄顺伟, 等. UHMWPE长丝加筋非织造布的制备及性能[J]. 丝绸, 2017,54(4):5-10.
XING Jingjing, QIAN Xiaoming, HUANG Shunwei, et al. The preparation and performance of the UHMWPE filament reinforced nonwoven[J]. Journal of Silk, 2017,54(4):5-10.
[8] LI Meng, LI Weiwei, MA Renliang, et al. Long UHMWPE fibers reinforced rigid polyurethane composites: an investigation in mechanical prope-rties[J]. European Polymer Journal, 2018(105):55-60.
[9] 艾承冲, 蒋佳, 陈世益. 超高分子量聚乙烯在骨科领域的应用及基础研究进展[J]. 复旦学报(医学版), 2016,43(6):717-723.
AI Chengchong, JIANG Jia, CHEN Shiyi. Application and research advance of ultra-high molecular weight polyethylene in orthopedics[J]. Fudan University Journal of Medical Sciences, 2016,43(6):717-723.
[10] ZHANG Kai, YANG Shangyou, YANG Shuye, et al. Different influence of Ti, PMMA, UHMWPE, and Co-Cr particles on peripheral blood monocytes during periprosthetic inflammation[J]. Journal of Biomedical Materials Research: Part A, 2015,103(1):358-364.
[11] 吴世臻, 肖长发, 安树林, 等. 超高分子量聚乙烯纤维热行为的研究[J]. 高分子材料科学与工程, 1995,11(3):108-111.
WU Shizhen, XIAO Changfa, AN Shulin, et al. Study on the thermal behavious of UHMWPE[J]. Polymer Materials Science & Engineering, 1995,11(3):108-111.
[12] 梁日辉, 都亚, 牧艺, 等. 紫外光辐照对超高分子量聚乙烯纤维结构与性能的影响[J]. 高分子材料科学与工程, 2014,30(8):85-90.
LIANG Rihui, DU Ya, MU Yi, et al. Effect of ultra-violet irradiation on structure and properties of ultra-high molecular weight polyethylene fibres[J]. Polymer Materials Science & Engineering, 2014,30(8):85-90.
[13] 李升芳, 谢葵, 包敏新, 等. 油井压裂纤维控砂工艺技术研究与应用[J]. 复杂油气藏, 2011,4(1):70-73.
LI Shengfang, XIE Kui, BAO Minxin, et al. Research on fiber composite sand control technique for oil well fracturing and its application[J]. Complex Hydrocarbon Reservoirs, 2011,4(1):70-73.
[14] 李常清, 袁姗, 刘晖, 等. 金属离子对PAN基碳纤维结构和性能的影响[J]. 北京化工大学学报(自然科学版), 2009,36(1):40-43.
LI Changqing, YUAN Shan, LIU Hui, et al. Influences of metal ions on the microstructure and mechanical properties of PAN-based carbon fibers[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2009,36(1):40-43.
[15] 罗峻, 邓华, 黎仲明, 等. 超高分子量聚乙烯纤维的拉伸热老化性能研究[J]. 纺织科技进展, 2017(5):9-11.
LUO Jun, DENG Hua, LI Zhongming, et al. Study on stretching and thermal aging property of ultrahigh molecular weight polyethylene fiber[J]. Progress in Textile Science & Technology, 2017(5):9-11.
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[3] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[4] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[5] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[6] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[7] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[8] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[9] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[10] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[11] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[12] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[13] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[14] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[15] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!