纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 29-33.doi: 10.13475/j.fzxb.20191205805

• 纤维材料 • 上一篇    下一篇

梯度结构活性碳纤维毡吸声性能分析

沈岳1, 蒋高明2(), 刘其霞1   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2019-12-26 修回日期:2020-06-03 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 蒋高明
  • 作者简介:沈岳(1979—),男,副教授,博士。主要研究方向为纺织品结构、性能及产品开发。
  • 基金资助:
    国家自然科学基金项目(51702167);江苏省高等学校自然科学研究重大项目(17KJA540001);江苏省先进纺织工程技术中心开放基金科研项目(XJFZ/2018/10);南通市科技计划项目(JC2018035)

Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure

SHEN Yue1, JIANG Gaoming2(), LIU Qixia1   

  1. 1. School of Textile and Garment, Nantong University, Nantong, Jiangsu 226019, China
    2. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2019-12-26 Revised:2020-06-03 Online:2020-10-15 Published:2020-10-27
  • Contact: JIANG Gaoming

摘要:

为研究梯度结构活性碳纤维毡的吸声性能,选取5种不同密度的粘胶基活性碳纤维毡,两两组合构成梯度结构,借助阻抗管在250~6 300 Hz频率声波范围内,对梯度结构活性碳纤维毡法向入射吸声系数进行测试,分析梯度方向、密度、结构对吸声性能的影响。结果表明:总密度相同的情况下,在低频段单一结构活性碳纤维毡吸声性能比正梯度结构好,但比倒梯度结构差,而在高频段单一结构吸声性能比正梯度结构差,但比倒梯度结构好;总密度不同的情况下,在低频段随着梯度结构总密度的增加,其吸声系数增加,而在高频段随着梯度结构第1层密度的增加,其吸声系数减小;随着活性碳纤维毡第1层密度的增加,第一共振频率向低频移动,随着总密度的增加,第一共振吸声系数增加。

关键词: 活性碳纤维, 梯度结构, 吸声系数, 第一共振频率, 吸声材料

Abstract:

In order to study the acoustic absorption properties of activated carbon fiber felts with gradient structure, five viscose based activated carbon fiber felts with different densities were selected and coupled into gradient structure. The impedance tube was used to test the normal incidence acoustic absorption coefficient of activated carbon fiber felts with gradient structure within 250-6 300 Hz accoustic waves. Factors impacting on the acoustic absorption performance of samples were explored by analyzing the effect of gradient direction, density and structures. The results show that under the same density, the acoustic absorption performance of the single structure at low frequency is better than that of the positive gradient structure, but worse than that of the inverted gradient structure. In the high frequency band, the acoustic absorption performance of the single structure is worse than that of the positive gradient structure, but better than that of the inverted gradient structure. In the case of different densities, the acoustic absorption coefficient increases as the total density of the gradient structure is increased in the low frequency band. In the high frequency band, the acoustic absorption coefficient decreases as the density of the first layer of the gradient structure is increased. As the density of the first layer increases, the first resonant frequency moves towards low direction. As the total density increases, the first resonance absorption coefficient increases.

Key words: activated carbon fiber, gradient structure, acoustic absorption coefficient, the first resonance frequency, sound absorbing material

中图分类号: 

  • TS176.5

表1

活性碳纤维毡规格表"

试样
编号
厚度/
mm
密度/
(kg·m-3)
比表面积/
(m2·g-1)
直径/
μm
孔容/
(cm3·g-1)
1# 4.5 52.8 1 395 8.7 0.851 5
2# 4.5 70.6 1 402 8.6 0.851 9
3# 4.5 82.3 1 399 8.5 0.851 3
4# 4.5 93.8 1 405 8.6 0.852 1
5# 4.5 111.9 1 408 8.7 0.852 6

图1

活性碳纤维毡梯度方向对吸声系数的影响"

图2

活性碳纤维毡密度对正梯度结构吸声系数的影响"

图3

活性碳纤维毡密度对倒梯度结构吸声系数的影响"

图4

活性碳纤维毡梯度结构对吸声系数的影响"

[1] ROMANOVA A, HOROSHENKOV K V, HURRELL A. An application of a parametric transducer to measure acoustic absorption of a living green wall[J]. Applied Acoustics, 2019,145(2):89-97.
doi: 10.1016/j.apacoust.2018.09.020
[2] CHEN Y, JIANG N. Carbonized and activated non-wovens as high-performance acoustic materials: part I noise[J]. Textile Research Journal, 2007,77(10):785-791.
doi: 10.1177/0040517507080691
[3] JIANG N, CHEN J Y, PARIKH D V. Acoustical evaluation of carbonized and activated cotton non-wovens[J]. Bioresource Technology, 2009,100(24):6533-6536.
doi: 10.1016/j.biortech.2008.10.062 pmid: 19664919
[4] SHEN Y, JIANG G M, LIU Q X. Establishment of acoustic characteristic model of activated carbon fiber felts[J]. Journal of The Textile Institute, 2019,110(10):1493-1498.
doi: 10.1080/00405000.2019.1603580
[5] SHEN Y, JIANG G M. The influence of production parameters on sound absorption of activated carbon fiber felts[J]. Journal of The Textile Institute, 2016,107(9):1144-1149.
doi: 10.1080/00405000.2015.1097083
[6] 沈岳, 蒋高明, 季涛, 等. 活性碳纤维材料声学特性参数研究[J]. 纺织学报, 2014,35(1):30-34.
SHEN Yue, JIANG Gaoming, JI Tao, et al. Study on acoustic characteristic parameters of activated carbon fiber materials[J]. Journal of Textile Research, 2014,35(1):30-34.
[7] 敖庆波, 王建忠, 李爱君, 等. 梯度纤维多孔材料的吸声特性及结构优化[J]. 稀有金属材料与工程, 2018,47(2):697-700.
AO Qingbo, WANG Jianzhong, LI Aijun, et al. Sound absorption characteristics and structure optimization of gradient fibrous porous materials[J]. Rare Metal Materials and Engineering, 2018,47(2):697-700.
[8] ZIELINSK T G, CHEVILLOTTE F, DECKERS E. Sound absorption of plates with micro-slits backed with air cavities: analytical estimations, numerical calculations and experimental validations[J]. Applied Acoustics, 2019(3):261-279.
[9] WANG J Z, AO Q B, MA J, et al. Sound absorption performance of porous metal fiber materials with different structures[J]. Applied Acoustics, 2019(2):431-438.
[10] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2006: 206-247.
MA Dayou. Theoretical basis of modern acoustics[M]. Beijing: Science Press, 2006: 206-247.
[1] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[2] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[3] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[4] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[5] 栾巧丽 邱华 成钢 刘晓燕. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(03): 67-71.
[6] 吕丽华 毕吉红 于翔. 废弃纤维吸声复合材料的制备及其吸声性能[J]. 纺织学报, 2016, 37(2): 39-43.
[7] 张恒 甄琪 王俊南 钱晓明 刘永胜. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016, 37(05): 17-22.
[8] 沈岳 蒋高明 季涛 高强 刘其霞. 活性炭纤维材料吸声性能预测模型[J]. 纺织学报, 2013, 34(4): 27-31.
[9] 沈岳 蒋高明 季涛 高强 刘其霞. 活性炭纤维材料吸声性能分析[J]. 纺织学报, 2013, 34(3): 1-4.
[10] 曾凡龙 刘占莲 韩芹 曹谦芝 仲林 肖婷婷. 活性炭纤维/NiO/MnO2复合电极的结构及其电化学性能[J]. 纺织学报, 2013, 34(10): 1-0.
[11] 姜生 蔡永东 周祥 晏雄 . 多层复合吸声结构的制备与性能研究[J]. 纺织学报, 2012, 33(9): 20-25.
[12] 张秀林 张越 刘庆生 邓炳耀. TiO2/ACF光催化材料的制备与特性[J]. 纺织学报, 2011, 32(8): 21-24.
[13] 姜生;晏雄. CPE/涤纶七孔短纤弹性体复合材料的吸声性能[J]. 纺织学报, 2010, 31(3): 32-35.
[14] 杨树;于伟东;;潘宁;. 非织造布的孔洞分形维数对其吸声性能的影响[J]. 纺织学报, 2010, 31(12): 28-32.
[15] 唐虹.;张渭源;黄晓梅. 机织面料吸湿快干梯度结构的构建[J]. 纺织学报, 2006, 27(8): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!