纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 168-173.doi: 10.13475/j.fzxb.20191206306
李好义1,2, 许浩1, 陈明军1, 杨涛3, 陈晓青1, 阎华1,2, 杨卫民1,2()
LI Haoyi1,2, XU Hao1, CHEN Mingjun1, YANG Tao3, CHEN Xiaoqing1, YAN Hua1,2, YANG Weimin1,2()
摘要:
为拓宽纳米纤维在声学领域的应用,促进高性能纳米纤维吸声材料的发展,对目前国内外纳米纤维的吸声降噪研究进展进行综述。首先分析了纳米纤维的吸声原理及吸声优势,认为纳米纤维的高比表面积与高孔隙率促进了其对中低频段声波的吸收;其次对影响纳米纤维吸声性能的因素进行了归纳与总结;然后重点阐述了纳米纤维对天然纤维、合成纤维与泡沫等材料吸声性能的影响,认为在常规吸声材料表面复合纳米纤维后可显著提升自身中低频段的吸声性能;最后针对纳米纤维吸声研究中亟待解决的问题以及如何制备绿色高性能的纳米纤维吸声材料进行了展望。
中图分类号:
[1] | 丁雷. 声频工程中共振吸声材料特性及应用[J]. 电声技术, 2019(5):12-18. |
DING Lei. Characteristics and application of resonant sound absorbing materials in audio engineering[J]. Audio Engineering, 2019(5):12-18. | |
[2] | CHANG G, ZHU X, LI A, et al. Formation and self-assembly of 3D nanofibrous networks based on oppositely charged jets[J]. Materials & Design, 2016,97:126-130. |
[3] |
RAHIMABADY M, STATHARAS E C, YAO K, et al. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption[J]. Applied Physics Letters, 2017,111(24):241601.
doi: 10.1063/1.5010743 |
[4] |
KALINOVÁ K. Nanofibrous resonant membrane for acoustic applications[J]. Journal of Nanomaterials, 2011.DOI: org/10.1155/2011/265720.
doi: 10.1155/2011/469031 pmid: 22448162 |
[5] |
KUCUKALI O M M K, KALINOVA K, NERGIS B, et al. Comparison of resonance frequency of a nanofibrous membrane and a homogeneous membrane structure[J]. Textile Research Journal, 2013,83(20):2204-2210.
doi: 10.1177/0040517513490064 |
[6] | ASMATULU R, KHAN W, YILDIRIM M B. Acoustical properties of electrospun nanofibers for aircraft interior noise reduction [C]//Asme International Mechanical Engineering Congress & Exposition. Florida: The American Society of Mechanical Engineers, 2009: 223-227. |
[7] | 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019,33(21):3669-3677. |
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019,33(21):3669-3677. | |
[8] |
KHAN W S, ASMATULU R, YILDIRIM M B. Acoustical properties of electrospun fibers for aircraft interior noise reduction[J]. Journal of Aerospace Engineering, 2012,25(3):376-382.
doi: 10.1061/(ASCE)AS.1943-5525.0000118 |
[9] |
SELVARAJ S, JEEVAN V, JONNALAGADDA R R, et al. Conversion of tannery solid waste to sound absorbing nanofibrous materials: a road to sustainability[J]. Journal of Cleaner Production, 2019,213:375-383.
doi: 10.1016/j.jclepro.2018.12.144 |
[10] |
KUCUKALI OZTURK M, NERGIS F B, CANDAN C. Design of layered structure with nanofibrous resonant membrane for acoustic applications[J]. Journal of Industrial Textiles, 2018,47(7):1739-1756.
doi: 10.1177/1528083717708483 |
[11] |
XIANG H, TAN S, YU X, et al. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes[J]. Chinese Journal of Polymer Science, 2011,29(6):650-657.
doi: 10.1007/s10118-011-1079-x |
[12] |
BAHRAMBEYGI H, SABETZADEH N, RABBI A, et al. Nanofibers (PU and PAN) and nanoparticles (nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption[J]. Journal of Polymer Research, 2013,20(2):72.
doi: 10.1007/s10965-012-0072-6 |
[13] | RABBI A, BAHRAMBEYGI H, NASOURI K, et al. Manufacturing of PAN or PU nanofiber layers/PET nonwoven composite as highly effective sound absorbers[J]. Advances in Polymer Technology, 2014,33(4):21425. |
[14] |
KUCUKALI O M, NERGIS F B, CANDAN C. Design of electrospun polyacrylonitrile nanofiber-coated nonwoven structure for sound absorption[J]. Polymers for Advanced Technologies, 2018,29(4):1255-1260.
doi: 10.1002/pat.v29.4 |
[15] | ZKAL A, CENGIZ Ç F, AKDUMAN Ç. Development of a new nanofibrous composite material from recycled nonwovens to improve sound absorption ability[J]. Journal of The Textile Institute Proceedings and Abstracts, 2020,111(2):189-201. |
[16] |
WU C M, CHOU M H. Polymorphism, piezoelectricity and sound absorption of electrospun PVDF membranes with and without carbon nanotubes[J]. Composites Science and Technology, 2016,127:127-133
doi: 10.1016/j.compscitech.2016.03.001 |
[17] |
JI G, CUI J, FANG Y, et al. Nano-fibrous composite sound absorbers inspired by owl feather surfaces[J]. Applied Acoustics, 2019,156:151-157.
doi: 10.1016/j.apacoust.2019.06.021 |
[18] |
NA Y, AGNHAGE T, CHO G. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption co-efficients[J]. Fibers and Polymers, 2012,13(10):1348-1352.
doi: 10.1007/s12221-012-1348-5 |
[19] |
CHEN F Q, WU Y H, DING Z Y, et al. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing[J]. Nano Energy, 2019,56:241-251.
doi: 10.1016/j.nanoen.2018.11.041 |
[20] | 浦文婧, 李效东, 王清华. 高分子吸声材料吸声性能与粘弹性之间的关系[J]. 高分子材料科学与工程, 2011,27(12):86-89. |
PU Wenjing, LI Xiaodong, WANG Qinghua. Relationship between acoustical absorptivity and viscoelasticity of acoustical absorptive polymer[J]. Polymer Materials Science & Engineering, 2011,27(12):86-89. | |
[21] |
ZKAL A, CENGIZ ÇALLIO LU F. Effect of nanofiber spinning duration on the sound absorption capacity of nonwovens produced from recycled polyethylene terephthalate fibers[J]. Applied Acoustics, 2020,169:107468.
doi: 10.1016/j.apacoust.2020.107468 |
[22] |
KUCUKALI O M, OZDEN Y E, NERGIS B, et al. Nanofiber-enhanced lightweight composite textiles for acoustic applications[J]. Journal of Industrial Textiles, 2017,46(7):1498-1510.
doi: 10.1177/1528083715622427 |
[23] |
AVOSSA J, BRANDA F, MARULO F, et al. Light electrospun polyvinylpyrrolidone blanket for low frequencies sound absorption[J]. Chinese Journal of Polymer Science, 2018,36(12):1368-1374.
doi: 10.1007/s10118-018-2154-3 |
[24] |
CAO L, SI Y, YIN X, et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption[J]. ACS Applied Materials & Interfaces, 2019,11(38):35333-35342.
doi: 10.1021/acsami.9b12444 pmid: 31487451 |
[25] | IANNACE G. Acoustic properties of nanofibers[J]. Noise & Vibration Worldwide, 2014,45(10):29-33. |
[26] | LIU H, WANG D, ZHAO N, et al. Application of electrospinning fibres on sound absorption in low and medium frequency range[J]. Materials Research Innovations, 2014,18(sup4):888-891. |
[27] | 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展[J]. 北京化工大学学报 (自然科学版), 2014,41(4):1-13. |
YANG Weimin, LI Haoyi, WU Weifeng, et al. Recent advances in melt electrospinning[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2014,41(4):1-13. | |
[28] | 陈明军, 张有忱, 李好义, 等. 熔体微分静电纺丝纳米纤维高效绿色制备技术[J]. 北京化工大学学报 (自然科学版), 2018,45(5):119-128. |
CHEN Mingjun, ZHANG Youchen, LI Haoyi, et al. Nanofiber preparation technology by melt differential electrospinning with high efficiency in the absence of a solvent[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2018,45(5):119-128. | |
[29] | 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017,38(3):67-71. |
LUAN Qiaoli, QIU Hua, CHENG Gang, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile Research, 2017,38(3):67-71. | |
[30] | 杜兆芳, 胡凤霞, 赵淼淼, 等. 汽车内饰材料的吸声性能[J]. 纺织学报, 2011,32(6):45-49. |
DU Zhaofang, HU Fengxia, ZHAO Miaomiao, et al. Sound absorption properties of automotive ornamental materials[J]. Journal of Textile Research, 2011,32(6):45-49. | |
[31] | 邹亚玲, 石琳, 周颖, 等. 纳米纤维毡复合材料制备及其吸声性能研究[J]. 产业用纺织品, 2014 (9):22-26. |
ZOU Yaling, SHI Lin, ZHOU Ying, et al. Preparation of sound absorption on nano-fiber composite mats and its sound absorption property[J]. Technical Textiles, 2014 (9):22-26. | |
[32] |
LOU C W, LIN J H, SU K H. Recycling polyester and polypropylene nonwoven selvages to produce functional sound absorption composites[J]. Textile Research Journal, 2005,75(5):390-394.
doi: 10.1177/0040517505054178 |
[33] | ARENAS J P, CROCKER M J. Recent trends in porous sound-absorbing materials[J]. Sound & Vibration, 2010,44(7):12-18. |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[5] | 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189. |
[6] | 周其洪, 孙宝通, 岑均豪, 占齐宸. 采用激光扫描建模的筒子纱卷绕密度测量方法[J]. 纺织学报, 2021, 42(01): 96-102. |
[7] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[8] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[9] | 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80. |
[10] | 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173. |
[11] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[12] | 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161. |
[13] | 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33. |
[14] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[15] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
|