纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 33-38.doi: 10.13475/j.fzxb.20191206806

• 纺织工程 • 上一篇    下一篇

不同压强条件下环锭旋流喷嘴内部流场模拟

初曦1,2, 邱华1,2()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2019-12-31 修回日期:2020-06-05 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 邱华
  • 作者简介:初曦(1998—),女,硕士生。主要研究方向为纤维流体加工技术。

Flow simulations of ring swirl nozzle under different inlet pressure conditions

CHU Xi1,2, QIU Hua1,2()   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2019-12-31 Revised:2020-06-05 Online:2020-09-15 Published:2020-09-25
  • Contact: QIU Hua

摘要:

为探究在不同环锭旋流喷嘴气道入口压强条件下喷嘴内部的流场分布规律,借助STAR-CCM+与ANSYS CFX流体分析软件建立旋流喷嘴模型并进行数值模拟分析,得到在纺纱过程中旋流喷嘴内部气流的速度和压力分布云图。结果表明:空气通入气道入口的流动机制遵循涡流效应,以旋流状向纱道两端流出,向两侧流出的旋流可对纱线进行轻微解捻和毛羽的进一步贴服;喷嘴内部流场对比示意图表明入口压强对纱线受力的分布并无影响,但气流压强波动幅度随入口压强的增大而增大,波动幅度越大越利于毛羽的包裹,对纤维束的包裹作用也更强烈,但过大的气流压强会造成更多纤维的流失。

关键词: 旋流喷嘴, 数值模拟, 毛羽, 气流场, STAR-CCM+, 纺纱

Abstract:

In order to explore the distribution of flow field inside the swirl nozzle under different inlet pressure conditions, modeling and numerical simulation analysis of the nozzle were carried out by fluid analysis software STAR-CCM+ and ANSYS CFX. The velocity and pressure distribution cloud chart of the air flow in the swirl nozzle was obtained during spinning. The results show that the flow mechanism of the air through the inlet of the air passage follows the eddy current effect, and the airflow in the swirl shape flows out to both ends of the yarn passage, which slightly untwists the yarn and further reduces the hairiness. The comparison diagram of flow field inside the nozzle shows that the inlet pressure has no effect on the distribution of yarn stress, but the fluctuation amplitude of air pressure increases with inlet pressure is increased. The larger is the fluctuation amplitude, the more favorable it becomes for the wrapping of hairiness and the stronger is the wrapping effect on fiber bundles. However, it was found that the excessive air pressure will cause more fiber loss.

Key words: swirl nozzle, numerical simulation, hairiness, airflow field, STAR-CCM+, spinning

中图分类号: 

  • TS104.7

图1

旋流喷嘴结构示意图"

图2

生成的体网格图"

图3

旋流喷嘴内部气流速度迹线图"

图4

旋流喷嘴纱道入口和出口处速度迹线图"

图5

旋流喷嘴内部气流速度矢量分布"

图6

旋流喷嘴轴线上气流的三向速度分布"

图7

xy平面范围内的气流压强分布"

图8

yz截面速度于z方向(a)和y方向(b)分布图"

图9

yz截面压力场云图"

图10

不同压强条件下4条直线上的压强分布"

图11

环锭旋流纺与环锭纺毛羽指数对比图"

[1] 陈根才, 章友鹤. 国内外环锭纺纱技术的发展与创新[J]. 现代纺织技术, 2011, 19(1):29-34.
CHEN Gencai, ZHANG Youhe. Development and inno-vation of ring spinning technology at home and abroad[J]. Advanced Textile Technology, 2011, 19(1):29-34.
[2] CARL A. Lawrence fundamentals of spun yarn technology[M]. Boca Raton: CRC Press, 2003: 1-5.
[3] QIU Hua, ZHANG Yuan, XU Zhilan, et al. A novel method to reduce hairiness level of ring spun yarn[J]. Fibers and Polymers, 2012, 13(1):104-109.
doi: 10.1007/s12221-012-0104-1
[4] 李明, 李明高. STAR-CCM+与流场计算[M]. 北京: 机械工业出版社, 2011:3-4.
LI Ming, LI Minggao. STAR-CCM+ and flow field calculation[M]. Beijing: Mechanical Industry Press, 2011:3-4.
[5] 郭会勇. 有限元在分析纱线毛羽减除机理上的应用[D]. 天津:天津工业大学, 2007:17-19.
GUO Huiyong. The application of finite element in the analysis of yarn hairiness reduction mechanism[D]. Tianjin: Tiangong University, 2007:17-19.
[6] 晏江, 邱华. 旋流喷嘴对大麻/棉混纺纱性能的影响[J]. 现代纺织技术, 2017, 25(6):87-91.
YAN Jiang, QIU Hua. The effect of swirl nozzle on the performance of hemp/cotton blended yarn[J]. Advanced Textile Technology, 2017, 25(6):87-91.
[7] 牟俊玲. 旋流喷嘴减少纱线毛羽的研究[D]. 无锡:江南大学, 2009:23-27.
MOU Junling. The research of cyclone on reducing yarn hairiness[D]. Wuxi: Jiangnan University, 2009:23-27.
[8] 陈娜, 吴敏, 邱华, 等. 应用STAR-CCM+的旋流喷嘴内部三维流场数值模拟与分析[J]. 纺织学报, 2014, 35(12):142-147.
CHEN Na, WU Min, QIU Hua, et al. Numerical simulation and analysis of three dimensional flow field inside swirl nozzle based on STAR-CCM+[J]. Journal of Textile Research, 2014, 35(12):142-147.
[9] 付玉叶, 邱华, 葛明桥. 气道位置对旋流器减少细纱毛羽效果的影响[J]. 纺织学报, 2014, 35(6):124-129.
FU Yuye, QIU Hua, GE Mingqiao. Influence of airway position on reducing spun yarn hairiness with cyclone[J]. Journal of Textile Research, 2014, 35(6):124-129.
[10] 晏江, 邱华, 崔荣荣. 汉麻面料研究进展[J]. 服装学报, 2016, 1(5):455-460.
YAN Jiang, QIU Hua, CUI Rongrong. Research progress of hemp fabric[J]. Journal of Clothing Research, 2016, 1(5):455-460.
[11] PATNAIK A, RENGASAMY R S, KOTHARI V K, et al. Airflow simulation in nozzle for hairiness reduction of ring spun yarns: part Ⅰ: influence of airflow direction, nozzle distance, and air pressure[J]. Journal of The Textile Institute, 2006, 97(1):89-96.
[12] 刘涛, 刘凤华, 余以正, 等. 基于STAR-CCM+的高速列车空气动力学性能数值分析[J]. 大连交通大学学报, 2013, 34(2):24-27.
LIU Tao, LIU Fenghua, YU Yizheng, et al. Numerical analysis of aerodynamic performance of a high-speed train based on STAR-CCM+[J]. Journal of Dalian Jiaotong University, 2013, 34(2):24-27.
[13] 潘锦珊. 气体动力学基础[M]. 北京: 国防工业出版社, 2012: 137-140.
PAN Jinshan. Fundamentals of aerodynamics[M]. Beijing: National Defense Industry Press, 2012, 137-140.
[14] RAMACHANDRALU K, DASARADAN B S. Design and fabrication of air jet nozzles for air vortex ring spinning system to reduce the hairiness of yarn[J]. Textile Industry of India, 2004, 43(6):26-31.
[15] GUO Yu, WASSGREN C, HANCOCK B, et al. Validation and time step determination of discrete element modeling of flexible fibers[J]. Powder Technology, 2013, 249(6):386-395.
doi: 10.1016/j.powtec.2013.09.007
[1] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[2] 马沙沙, 王俊勃, 雒千, 思芳, 杨敏鸽, 陈宁波, 张小峰, 李博. 镍-磷-纳米碳化硅-聚四氟乙烯化学复合镀对纺纱钢丝圈寿命的影响[J]. 纺织学报, 2020, 41(12): 151-156.
[3] 程璐, 陈婷婷, 曹吉强, 王颖, 夏鑫. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(09): 39-44.
[4] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[5] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[6] 莫帅, 冯战勇, 党合玉, 邹振兴. 棉纺细纱锭子发展演变与研究展望[J]. 纺织学报, 2020, 41(06): 190-196.
[7] 钱成, 刘燕卿, 刘新金, 谢春萍, 苏旭中. 四罗拉集聚纺纱系统纤维运动数值模拟与分析[J]. 纺织学报, 2020, 41(03): 39-44.
[8] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[9] 张婷婷, 薛元, 贺玉东, 刘曰兴, 张国清. 环锭数码纱Kubelka-Munk 双常数配色模型构建及其色彩预测 [J]. 纺织学报, 2020, 41(01): 50-55.
[10] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[11] 魏艳红, 谢春萍, 刘新金, 苏旭中, 殷高伟. 基于大直径软胶辊的细纱牵伸机制及其应用效果[J]. 纺织学报, 2019, 40(10): 62-67.
[12] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[13] 李鹏飞, 严凯, 张缓缓, 景军锋. 基于最大熵与密度聚类相融合的毛羽检测[J]. 纺织学报, 2019, 40(07): 158-162.
[14] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[15] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!