纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 181-189.doi: 10.13475/j.fzxb.20200101609

• 综合述评 • 上一篇    下一篇

树脂基纺织复合材料疲劳性能表征与分析方法研究现状

吕庆涛1,2, 赵世波1,2, 杜培健1,2, 陈利1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2020-01-09 修回日期:2020-09-03 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 陈利
  • 作者简介:吕庆涛(1992—),男,硕士生。主要研究方向为纺织复合材料疲劳性能。
  • 基金资助:
    天津市科技重大专项与工程项目(18ZXJMTG00190);山西省科技重大专项资助项目(20181102022);天津市高等学校创新团队培养计划项目(TD13-5043)

Research status of fatigue properties characterization and analysis methods of resin matrix composites

LÜ Qingtao1,2, ZHAO Shibo1,2, DU Peijian1,2, CHEN Li1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2020-01-09 Revised:2020-09-03 Online:2021-01-15 Published:2021-01-21
  • Contact: CHEN Li

摘要:

为更好了解纺织复合材料疲劳性能的损伤机制及影响因素。综述了织物结构差异、环境因素、疲劳实验过程中的自热对复合材料疲劳性能的影响,以及近年来复合材料疲劳强度模型的研究近况;对比分析了不同织物结构复合材料的疲劳性能研究近况及损伤情况,以及结构的差异对材料的疲劳寿命及损伤影响;探讨了水、高温、化学介质、紫外线辐射等环境因素对材料损伤机制和疲劳性能的影响,并对试样产生自热而导致复合材料疲劳性能过早失效进行分析;最后总结了复合材料疲劳性能仍然存在的问题,并对其在未来的发展方向进行了展望。

关键词: 织物结构, 复合材料, 疲劳性能, 疲劳强度模型

Abstract:

In order to better understand the fatigue performance of textile composites research, this paper reviews the influence of fabric structure, environmental factors, self-heat during fatigue experiment on the fatigue of composite materials, and the recent research on fatigue strength model of composite materials are scrutinized. Firstly, the fatigue properties and damage of composites reinforced by different fabric structures are compared and analyzed, revealing that the fatigue and damage of composites are affected by the reinforcing structures. Environmental factors, such as water, temperature, chemical medium and ultraviolet radiation, have different damage mechanisms on textile composite materials, but they all make the composite fatigue life shorter. The spontaneous heat generated by the sample during the experiment also leads to premature failure of the composite. The problems in composite fatigue are summarized, and the development directions of composites in the future are proposed.

Key words: fabric structure, composite material, fatigue performance, fatigue strength model

中图分类号: 

  • TB332
[1] ROBERT S, PIERCE, BRIAN G. Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures[J]. Engineering, 2017,3(5):53-78.
[2] SABOKTAKIN RIZI A. Integrity assessment of preforms and thick textile reinforced composites for aerospace applications[J]. International Journal of Immunology Research, 2013,46(8):883-894.
[3] 徐艺榕, 孙颖, 韩朝锋. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014,35(9):165-172.
XU Yirong, SUN Ying, HAN Chaofeng. Research progress of formability of three-dimensional woven fabrics for composites[J]. Journal of Textile Research, 2014,35(9):165-172.
[4] SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017,3(1):12.
[5] ANSARI M T, SINGH K K, AZAM M S. Fatigue damage analysis of fiber-reinforced polymer composites a review[J]. Journal of Reinforced Plastics and Composites, 2018,37(9):636-654.
[6] 贺雍律, 张鉴炜, 黄春芳, 等. CFRP层合板抗分层损伤技术研究进展[J]. 材料导报, 2018,32(13):2288-2294.
HE Yonglv, ZHANG Jianwei, HUANG Chunfang, et al. Research progress of anti-laminar damage technology of CFRP laminated plates[J]. Journal of Materials, 2012,32(13):2288-2294.
[7] SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):020802.
[8] GHORBANI V, JEDDI, DABIRYAN H. Investigation of the flexural behavior of self-consolidating mortars reinforced with net warp-knitted spacer fabrics[J]. Construction and Building Materials, 2019,232:117270.
[9] 梁佳玉, 秦志刚. 碳纤维衬纬纬编针织物增强复合材料的拉伸性能[J]. 玻璃钢/复合材料, 2018,(11):89-93.
LIANG Jiayu, QIN Zhigang. Tensile properties of carbon fiber lined knitwear reinforced composites[J]. Fiber Reinforced Plastics/Composites, 2018(11):89-93.
[10] 张中伟. 三维编织复合材料T型梁弯曲疲劳性能[D]. 上海:东华大学, 2014: 12-16.
ZHANG Zhongwei. Bending fatigue performance of three-dimensional braided composite T-beam[D]. Shanghai:Donghua University, 2014: 12-16.
[11] 陈天雄, 张铮, 王奇志, 等. 二维编织C/SiC复合材料板疲劳损伤分析[J]. 北京航空航天大学学报, 2019,45(1):192-199.
CHEN Tianxiong, ZHANG Zheng, WANG Qizhi, et al. Fatigue damage analysis of two-dimensional braided C/SiC composite plates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019,45(1):192-199.
[12] 王宇. 三维斜交机织复合材料细观结构与力学性能研究[D]. 南京:南京航空航天大学, 2017: 13-15.
WANG Yu. Study on microstructure and mechanical properties of three-dimensional skew woven composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 13-15.
[13] JIN L, HU H, SUN B, et al. Three-point bending fatigue behavior of 3D angle-interlock woven compo-site[J]. Journal of Composite Materials, 2012,46(8):883-894.
[14] 姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018,35(10):112-120.
YAO Siyuan, CHEN Xiuhua. Fatigue properties of three-dimensional woven composites under tensile and compressive cyclic loading[J]. Acta Materiale Composite Sinica, 2018,35(10):112-120.
[15] BILISIK K. Three-dimensional braiding for composites: a review[J]. Textile Research Journal, 2013,83(13):1414-1436.
[16] CARVELLI V, PAZMINO J, LOMOV S V, et al. Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite[J]. Journal of Composite Materials, 2013,47(25):3195-3209.
[17] WU L, ZHANG F, SUN B, et al. Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level[J]. International Journal of Mechanical Sciences, 2014,84:41-53.
[18] MONTESANO J, FAWAZ Z, BEHDINAN K, et al. Fatigue damage characterization and modeling of a triaxially braided polymer matrix composite at elevated temperatures[J]. Composite Structures, 2013,101:129-137.
[19] MENG M. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites[J]. Composite Structures, 2016,138:295-304.
[20] MA Bilin, FENG Yu, HE Yuting, et al. Effect of hygrothermal environment on the tension-tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2019,20(7):499-514.
[21] BARBIÈRE, TOUCHARD F, CHOCINSKI-ARNAULT L, et al. Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: acoustic emission and micro-ct analysis[J]. International Journal of Fatigue, 2020,136:105593.
[22] 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳:沈阳航空航天大学, 2017: 22-26.
LIU Jiaqi. Effects of environmental factors on mechanical properties of T700/HT280 composites[D]. Shenyang:Shenyang Aerospace University, 2017: 22-26.
[23] 陈波, 温卫东, 崔海涛, 等. 单向碳/碳复合材料高温疲劳试验研究[J]. 推进技术, 2019,40(2):456-462.
CHEN Bo, WEN Weidong, CUI Haitao, et al. Study on unidirectional carbon/carbon composite high-temperature Fatigue test[J]. Journal of Propulsion Technology, 2019,40(2):456-462.
[24] 高禹, 刘佳琦, 王绍权. 高温老化对T700/HT280双马来酰亚胺复合材料疲劳性能的影响[J]. 复合材料学报, 2017,34(2):240-246.
GAO Yu, LIU Jiaqi, WANG Shaoquan. Effects of high-temperature aging on fatigue performance of T700/HT280 bismaleimide compo-sites[J]. Acta Materiae Composite Sinica, 2017,34(2):240-246.
[25] SONG J, WEN W, CUI H. Fatigue life prediction model of 2.5D woven composites at various temperatures[J]. Chinese Journal of Aeronautics, 2018,31(2):110-129.
[26] 陈波, 温卫东, 孙煦泽, 等. 三维编织碳/碳复合材料高温力学及疲劳试验研究[J]. 南京工业大学学报(自然科学版), 2018,40(1):8-16.
CHEN Bo, WEN Weidong, SUN Xuze, et al. Experimental study on high temperature mechanics and fatigue test of three-dimensional woven carbon/carbon composite[J]. Journal of Nanjing University of Technolo-gy (Natural Science Edition), 2018,40(1):8-16.
[27] WU P, XU L, LUO J, et al. Influences of long-term immersion of water and alkaline solution on the fatigue performances of unidirectional pultruded CFRP plate[J]. Construction and Building Materials, 2019,205(30):344-356.
[28] MARRU P, LATANE V, PUJA C, et al. Lifetime estimation of glass reinforced epoxy pipes in acidic and alkaline environment using accelerated test methodo-logy[J]. Fibers & Polymers, 2014,15(9):1935-1940.
[29] RAY B C, RATHORE D. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: critical concepts and comments[J]. Advances in Colloid & Interference, 2014,209:68-83.
[30] 许燕杰, 肇研, 汤冰洁, 等. UVA紫外辐射对室内碳纤维增强环氧树脂基复合材料性能的影响[J]. 复合材料学报, 2013,30(2):63-69.
XU Yanjie, ZHAO Yan, TANG Bingjie, et al. Effect of UVA ultraviolet radiation on properties of carbon fiber reinforced epoxy matrix composites[J]. Acta Materiale Composite Sinica, 2013,30(2):63-69.
[31] EFTEKHARI M, FATEMI A. On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites: experiments and modeling[J]. International Journal of Fatigue, 2016,87(7):153-166.
[32] MORTAZAVIAN S, FATEMI A, MELLOTT S R, et al. Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers[J]. Polymer Engineering & Ence, 2015,55(10):2355-2367.
[33] GORNET L, WESPHAL, OPHLIE, BURTIN C, et al. Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations[J]. Procedia Engineering, 2013,66:697-704.
[34] MARIN J C, JUSTO J, PARÍS F, et al. The effect of frequency on tension: tension fatigue behavior of unidirectional and woven fabric graphite-epoxy composites[J]. Mechanics of Advanced Materials and Structures, 2018,26(17):1430-1436.
[35] XARGAY H, FOLINO, NUNEZ N, et al. Acoustic emission behavior of thermally damaged self-compacting high strength fiber reinforced concrete[J]. Construction and Building Materials, 2018,187:519-530.
[36] KATUNIN A. Evaluation of criticality of self-heating of polymer composites by estimating the heat dissipation rate[J]. Mechanics of Composite Materials, 2018,54(1):53-60.
[37] KATUNIN A, WRONKOWICZ A. Characterization of failure mechanisms of composite structures subjected to fatigue dominated by the self-heating effect[J]. Composite Structures, 2017,180:1-8.
[38] TURCZYN R, KRUKIEWICZ K, KATUNIN A. Spectroscopic evaluation of structural changes in composite materials subjected to self-heating effect[J]. Composite Structures, 2018,204:192-197.
[39] RATNER S B, KOROBOV V I. Self-heating of plastics during cyclic deformation[J]. Polymer Mechanics, 1965,1(3):63-68.
[40] KAHIRDEH A, NADERI M, KHONSARI M. On the role of cooling on fatigue failure of a woven glass/epoxy laminate[J]. Journal of Composite Materials, 2013,47(15):1803-1816.
[41] LAHUERTA F, WESTPHAL T, NIJSSEN R P L. Self-heating forecasting for thick laminate specimens in fatigue[J]. Journal of Physics (Conference Series), 2014,555:012062.
[42] KATUNIN A, WACHLA D. Influence of air cooling onthe fatigue of a polymer composite under self-heating[J]. Mechanics of Composite Materials, 2020,56(1):93-102.
[43] TONG X, CHEN X, XU J S, et al. The heat build up of a polymer matrix composite under cyclic loading:experimental assessment and numerical simulation[J]. International Journal of Fatigue, 2018,116:323-333.
[44] HASHIN Z, ROTEM A. Fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973,7(4):448-464.
[45] SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):021401.
[46] 马丹, 方允伟, 王佳庆, 等. 高性能玻璃纤维增强树脂基复合材料拉-压疲劳行为[J]. 宇航材料工艺, 2018,48(4):63-66.
MA Dan, FANG Yunwei, WANG Jiaqing, et al. Tensile and compressive fatigue behavior of high-performance fiberglass reinforced resin matrix composites[J]. Aerospace Materials Technology, 2018,48(4):63-66.
[47] 张亚騤, 周瑞祥, 郭书祥, 等. 压气机叶片复合疲劳试验系统的设计及疲劳寿命分析[J]. 航空动力学报, 2017,32(12):2880-2887.
ZHANG Yakui, ZHOU Ruixiang, GUO Shuxiang, et al. Design and fatigue life analysis of compressor blade composite fatigue test system[J]. Journal of Aeronautical Dynamics, 2017,32(12):2880-2887.
[48] KAWAI M, YANO K. Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P-S-N curves for woven carbon/epoxy laminates at any stress ratio[J]. Composites Part A (Applied Science and Manufacturing), 2016,80:244-258.
[49] KSWS M, MATSUDA Y, YOSHIMURA R. A general method for predicting temperature-dependent anisomorphic constant fatigue life diagram for a woven fabric carbon/epoxy laminate[J]. Composites Part A, 2012,43(6):915-925.
[50] YAGIHASHI Y, HOSHI H, et al. Anisomorphic constant fatigue life diagrams for quasi-isotropic woven fabric carbon/epoxy laminates under different hygro-thermal environments[J]. Advanced Composite Materials, 2013,22(2):79-98.
[51] CHEBBI E, MARS, HENTATI H, et al. A new cumulative fatigue damage model for short glass fiber-reinforced polyamide 66[J]. Design and Modeling of Mechanical Systems, 2018,207169:227-234.
[52] 朱元林, 温卫东, 刘礼华, 等. 单向碳/碳复合材料拉-拉疲劳寿命及剩余强度预测模型[J]. 复合材料学报, 2018,35(8):2293-2301.
ZHU Yuanlin, WEN Weidong, LIU Lihua, et al. Prediction model of tensile fatigue life and residual strength of unidirectional carbon/carbon composites[J]. Acta Materiale Composites Sinica, 2018,35(8):2293-2301.
[53] SHAO Y, OKUBO K, FUJII T, et al. Effect of matrix properties on the fatigue damage initiation and its growth in plain woven carbon fabric vinylester composites[J]. Composites Ence and Technology, 2014,104:125-135.
[54] WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures, 2000,48(4):261-264.
[55] HOSOI A, SATO N, KUSUMOTO Y, et al. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 10~8 cycles (initiation and propagation of delamination considering interaction with transverse cracks)[J]. International Journal of Fatigue, 2010,32(1):29-36.
[56] NENADSTOJKOVI C. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue, 2017,103:478-487.
[57] YANG J N, LEE L J, SHEU D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992,21(2):91-100.
[58] WU Wen. A study of fatigue damage and fatigue life of composite laminates[J]. Journal of Composite Materials, 1996,30(1):123-137.
[59] 吴增文. 复合材料薄壁结构随机疲劳损伤模型及分析[D]. 哈尔滨:哈尔滨工业大学, 2019: 65-70.
WU Zengwen. Stochastic fatigue damage model and Analysis of composite thin-wall structures[D]. Harbin:Harbin Institute of Technology, 2019: 65-70.
[60] 罗白璐, 朱英富, 李之达, 等. 夹芯结构的疲劳裂纹损伤扩展研究[J]. 船舶力学, 2019,23(8):988-996.
LUO Baolu, ZHU Yingfu, LI Zhida, et al. Study on fatigue crack damage growth of sandwich structures[J]. Ship Mechanics, 2019,23(8):988-996.
[61] 陈基伟, 姚卫星, 宗俊达, 等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报, 2019,51(4):534-539.
CHEN Jiwei, YAO Weixing, ZONG Junda, et al. Studyon probability model of residual stiffness of composite materials[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019,51(4):534-539.
[62] 宗俊达, 姚卫星. 复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016,33(2):280-286.
ZONG Junda, YAO Weixing. Composite residual stiffness degradation composite model of composite materials[J]. Acta Materiae Composites Sinica, 2016,33(2):280-286.
[63] PARK K J, KANG H J, CHOI I H, et al. Progressivefailure analysis of carbon-fiber reinforced polymer (CFRP) laminates using combined material nonlinear elasticity and continuum damage mechanics based on treatment of coupon test[J]. Journal of Composite Materials, 2015,488/489:525-529.
[64] 康军, 陈永强, 陈尚, 等. 基于加速试验方法的复合材料长期寿命预测[J]. 玻璃钢/复合材料, 2017(3):25-30.
KANG Jun, CHEN Yongqiang, CHEN Shang, et al. Long-term life prediction of composites based on accelerated test method[J]. Fiber Reinforced Plastics/Composites, 2017(3):25-30.
[65] 王奇志, 张迪, 林慧星. 高温下C/SiC复合材料疲劳寿命预估方法研究[J]. 计算机仿真, 2019,36(7):208-212.
WANG Qizhi, ZHANG Di, LIN Huixing. Study on fatigue life prediction method of C/SiC composites at high temperature[J]. Computer Simulation, 2019,36(7):208-212.
[66] XU J, LOMOV S V, VERPOEST I, et al. A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis[J]. Computers & Structures, 2015,152:96-112.
[67] ZHANG L, HU D, WANG R, et al. Establishing RVE model composed of dry fibers and matrix for 3D four-directional braided composites[J]. Journal of Composite Materials, 2018,53(14):1917-1934.
[68] SHEN X. RVE model with porosity for 2D woven CVI SiCf/SiC composites[J]. Journal of Materials Engineering & Performance, 2016,25(12):5138-5144.
[1] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[2] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[3] 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173.
[4] 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161.
[5] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[6] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[7] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[8] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[9] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[10] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[11] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[12] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[13] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[14] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[15] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!