纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 181-189.doi: 10.13475/j.fzxb.20200101609
吕庆涛1,2, 赵世波1,2, 杜培健1,2, 陈利1,2()
LÜ Qingtao1,2, ZHAO Shibo1,2, DU Peijian1,2, CHEN Li1,2()
摘要:
为更好了解纺织复合材料疲劳性能的损伤机制及影响因素。综述了织物结构差异、环境因素、疲劳实验过程中的自热对复合材料疲劳性能的影响,以及近年来复合材料疲劳强度模型的研究近况;对比分析了不同织物结构复合材料的疲劳性能研究近况及损伤情况,以及结构的差异对材料的疲劳寿命及损伤影响;探讨了水、高温、化学介质、紫外线辐射等环境因素对材料损伤机制和疲劳性能的影响,并对试样产生自热而导致复合材料疲劳性能过早失效进行分析;最后总结了复合材料疲劳性能仍然存在的问题,并对其在未来的发展方向进行了展望。
中图分类号:
[1] | ROBERT S, PIERCE, BRIAN G. Simulating resin infusion through textile reinforcement materials for the manufacture of complex composite structures[J]. Engineering, 2017,3(5):53-78. |
[2] | SABOKTAKIN RIZI A. Integrity assessment of preforms and thick textile reinforced composites for aerospace applications[J]. International Journal of Immunology Research, 2013,46(8):883-894. |
[3] | 徐艺榕, 孙颖, 韩朝锋. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014,35(9):165-172. |
XU Yirong, SUN Ying, HAN Chaofeng. Research progress of formability of three-dimensional woven fabrics for composites[J]. Journal of Textile Research, 2014,35(9):165-172. | |
[4] | SALEH M N, SOUTIS C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017,3(1):12. |
[5] | ANSARI M T, SINGH K K, AZAM M S. Fatigue damage analysis of fiber-reinforced polymer composites a review[J]. Journal of Reinforced Plastics and Composites, 2018,37(9):636-654. |
[6] | 贺雍律, 张鉴炜, 黄春芳, 等. CFRP层合板抗分层损伤技术研究进展[J]. 材料导报, 2018,32(13):2288-2294. |
HE Yonglv, ZHANG Jianwei, HUANG Chunfang, et al. Research progress of anti-laminar damage technology of CFRP laminated plates[J]. Journal of Materials, 2012,32(13):2288-2294. | |
[7] | SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):020802. |
[8] | GHORBANI V, JEDDI, DABIRYAN H. Investigation of the flexural behavior of self-consolidating mortars reinforced with net warp-knitted spacer fabrics[J]. Construction and Building Materials, 2019,232:117270. |
[9] | 梁佳玉, 秦志刚. 碳纤维衬纬纬编针织物增强复合材料的拉伸性能[J]. 玻璃钢/复合材料, 2018,(11):89-93. |
LIANG Jiayu, QIN Zhigang. Tensile properties of carbon fiber lined knitwear reinforced composites[J]. Fiber Reinforced Plastics/Composites, 2018(11):89-93. | |
[10] | 张中伟. 三维编织复合材料T型梁弯曲疲劳性能[D]. 上海:东华大学, 2014: 12-16. |
ZHANG Zhongwei. Bending fatigue performance of three-dimensional braided composite T-beam[D]. Shanghai:Donghua University, 2014: 12-16. | |
[11] | 陈天雄, 张铮, 王奇志, 等. 二维编织C/SiC复合材料板疲劳损伤分析[J]. 北京航空航天大学学报, 2019,45(1):192-199. |
CHEN Tianxiong, ZHANG Zheng, WANG Qizhi, et al. Fatigue damage analysis of two-dimensional braided C/SiC composite plates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019,45(1):192-199. | |
[12] | 王宇. 三维斜交机织复合材料细观结构与力学性能研究[D]. 南京:南京航空航天大学, 2017: 13-15. |
WANG Yu. Study on microstructure and mechanical properties of three-dimensional skew woven composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 13-15. | |
[13] | JIN L, HU H, SUN B, et al. Three-point bending fatigue behavior of 3D angle-interlock woven compo-site[J]. Journal of Composite Materials, 2012,46(8):883-894. |
[14] | 姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018,35(10):112-120. |
YAO Siyuan, CHEN Xiuhua. Fatigue properties of three-dimensional woven composites under tensile and compressive cyclic loading[J]. Acta Materiale Composite Sinica, 2018,35(10):112-120. | |
[15] | BILISIK K. Three-dimensional braiding for composites: a review[J]. Textile Research Journal, 2013,83(13):1414-1436. |
[16] | CARVELLI V, PAZMINO J, LOMOV S V, et al. Quasi-static and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite[J]. Journal of Composite Materials, 2013,47(25):3195-3209. |
[17] | WU L, ZHANG F, SUN B, et al. Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level[J]. International Journal of Mechanical Sciences, 2014,84:41-53. |
[18] | MONTESANO J, FAWAZ Z, BEHDINAN K, et al. Fatigue damage characterization and modeling of a triaxially braided polymer matrix composite at elevated temperatures[J]. Composite Structures, 2013,101:129-137. |
[19] | MENG M. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites[J]. Composite Structures, 2016,138:295-304. |
[20] | MA Bilin, FENG Yu, HE Yuting, et al. Effect of hygrothermal environment on the tension-tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2019,20(7):499-514. |
[21] | BARBIÈRE, TOUCHARD F, CHOCINSKI-ARNAULT L, et al. Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: acoustic emission and micro-ct analysis[J]. International Journal of Fatigue, 2020,136:105593. |
[22] | 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳:沈阳航空航天大学, 2017: 22-26. |
LIU Jiaqi. Effects of environmental factors on mechanical properties of T700/HT280 composites[D]. Shenyang:Shenyang Aerospace University, 2017: 22-26. | |
[23] | 陈波, 温卫东, 崔海涛, 等. 单向碳/碳复合材料高温疲劳试验研究[J]. 推进技术, 2019,40(2):456-462. |
CHEN Bo, WEN Weidong, CUI Haitao, et al. Study on unidirectional carbon/carbon composite high-temperature Fatigue test[J]. Journal of Propulsion Technology, 2019,40(2):456-462. | |
[24] | 高禹, 刘佳琦, 王绍权. 高温老化对T700/HT280双马来酰亚胺复合材料疲劳性能的影响[J]. 复合材料学报, 2017,34(2):240-246. |
GAO Yu, LIU Jiaqi, WANG Shaoquan. Effects of high-temperature aging on fatigue performance of T700/HT280 bismaleimide compo-sites[J]. Acta Materiae Composite Sinica, 2017,34(2):240-246. | |
[25] | SONG J, WEN W, CUI H. Fatigue life prediction model of 2.5D woven composites at various temperatures[J]. Chinese Journal of Aeronautics, 2018,31(2):110-129. |
[26] | 陈波, 温卫东, 孙煦泽, 等. 三维编织碳/碳复合材料高温力学及疲劳试验研究[J]. 南京工业大学学报(自然科学版), 2018,40(1):8-16. |
CHEN Bo, WEN Weidong, SUN Xuze, et al. Experimental study on high temperature mechanics and fatigue test of three-dimensional woven carbon/carbon composite[J]. Journal of Nanjing University of Technolo-gy (Natural Science Edition), 2018,40(1):8-16. | |
[27] | WU P, XU L, LUO J, et al. Influences of long-term immersion of water and alkaline solution on the fatigue performances of unidirectional pultruded CFRP plate[J]. Construction and Building Materials, 2019,205(30):344-356. |
[28] | MARRU P, LATANE V, PUJA C, et al. Lifetime estimation of glass reinforced epoxy pipes in acidic and alkaline environment using accelerated test methodo-logy[J]. Fibers & Polymers, 2014,15(9):1935-1940. |
[29] | RAY B C, RATHORE D. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: critical concepts and comments[J]. Advances in Colloid & Interference, 2014,209:68-83. |
[30] | 许燕杰, 肇研, 汤冰洁, 等. UVA紫外辐射对室内碳纤维增强环氧树脂基复合材料性能的影响[J]. 复合材料学报, 2013,30(2):63-69. |
XU Yanjie, ZHAO Yan, TANG Bingjie, et al. Effect of UVA ultraviolet radiation on properties of carbon fiber reinforced epoxy matrix composites[J]. Acta Materiale Composite Sinica, 2013,30(2):63-69. | |
[31] | EFTEKHARI M, FATEMI A. On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites: experiments and modeling[J]. International Journal of Fatigue, 2016,87(7):153-166. |
[32] | MORTAZAVIAN S, FATEMI A, MELLOTT S R, et al. Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers[J]. Polymer Engineering & Ence, 2015,55(10):2355-2367. |
[33] | GORNET L, WESPHAL, OPHLIE, BURTIN C, et al. Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations[J]. Procedia Engineering, 2013,66:697-704. |
[34] | MARIN J C, JUSTO J, PARÍS F, et al. The effect of frequency on tension: tension fatigue behavior of unidirectional and woven fabric graphite-epoxy composites[J]. Mechanics of Advanced Materials and Structures, 2018,26(17):1430-1436. |
[35] | XARGAY H, FOLINO, NUNEZ N, et al. Acoustic emission behavior of thermally damaged self-compacting high strength fiber reinforced concrete[J]. Construction and Building Materials, 2018,187:519-530. |
[36] | KATUNIN A. Evaluation of criticality of self-heating of polymer composites by estimating the heat dissipation rate[J]. Mechanics of Composite Materials, 2018,54(1):53-60. |
[37] | KATUNIN A, WRONKOWICZ A. Characterization of failure mechanisms of composite structures subjected to fatigue dominated by the self-heating effect[J]. Composite Structures, 2017,180:1-8. |
[38] | TURCZYN R, KRUKIEWICZ K, KATUNIN A. Spectroscopic evaluation of structural changes in composite materials subjected to self-heating effect[J]. Composite Structures, 2018,204:192-197. |
[39] | RATNER S B, KOROBOV V I. Self-heating of plastics during cyclic deformation[J]. Polymer Mechanics, 1965,1(3):63-68. |
[40] | KAHIRDEH A, NADERI M, KHONSARI M. On the role of cooling on fatigue failure of a woven glass/epoxy laminate[J]. Journal of Composite Materials, 2013,47(15):1803-1816. |
[41] | LAHUERTA F, WESTPHAL T, NIJSSEN R P L. Self-heating forecasting for thick laminate specimens in fatigue[J]. Journal of Physics (Conference Series), 2014,555:012062. |
[42] | KATUNIN A, WACHLA D. Influence of air cooling onthe fatigue of a polymer composite under self-heating[J]. Mechanics of Composite Materials, 2020,56(1):93-102. |
[43] | TONG X, CHEN X, XU J S, et al. The heat build up of a polymer matrix composite under cyclic loading:experimental assessment and numerical simulation[J]. International Journal of Fatigue, 2018,116:323-333. |
[44] | HASHIN Z, ROTEM A. Fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973,7(4):448-464. |
[45] | SEVENOIS R D B, VAN PAEPEGEM W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques[J]. Applied Mechanics Reviews, 2015,67(2):021401. |
[46] | 马丹, 方允伟, 王佳庆, 等. 高性能玻璃纤维增强树脂基复合材料拉-压疲劳行为[J]. 宇航材料工艺, 2018,48(4):63-66. |
MA Dan, FANG Yunwei, WANG Jiaqing, et al. Tensile and compressive fatigue behavior of high-performance fiberglass reinforced resin matrix composites[J]. Aerospace Materials Technology, 2018,48(4):63-66. | |
[47] | 张亚騤, 周瑞祥, 郭书祥, 等. 压气机叶片复合疲劳试验系统的设计及疲劳寿命分析[J]. 航空动力学报, 2017,32(12):2880-2887. |
ZHANG Yakui, ZHOU Ruixiang, GUO Shuxiang, et al. Design and fatigue life analysis of compressor blade composite fatigue test system[J]. Journal of Aeronautical Dynamics, 2017,32(12):2880-2887. | |
[48] | KAWAI M, YANO K. Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P-S-N curves for woven carbon/epoxy laminates at any stress ratio[J]. Composites Part A (Applied Science and Manufacturing), 2016,80:244-258. |
[49] | KSWS M, MATSUDA Y, YOSHIMURA R. A general method for predicting temperature-dependent anisomorphic constant fatigue life diagram for a woven fabric carbon/epoxy laminate[J]. Composites Part A, 2012,43(6):915-925. |
[50] | YAGIHASHI Y, HOSHI H, et al. Anisomorphic constant fatigue life diagrams for quasi-isotropic woven fabric carbon/epoxy laminates under different hygro-thermal environments[J]. Advanced Composite Materials, 2013,22(2):79-98. |
[51] | CHEBBI E, MARS, HENTATI H, et al. A new cumulative fatigue damage model for short glass fiber-reinforced polyamide 66[J]. Design and Modeling of Mechanical Systems, 2018,207169:227-234. |
[52] | 朱元林, 温卫东, 刘礼华, 等. 单向碳/碳复合材料拉-拉疲劳寿命及剩余强度预测模型[J]. 复合材料学报, 2018,35(8):2293-2301. |
ZHU Yuanlin, WEN Weidong, LIU Lihua, et al. Prediction model of tensile fatigue life and residual strength of unidirectional carbon/carbon composites[J]. Acta Materiale Composites Sinica, 2018,35(8):2293-2301. | |
[53] | SHAO Y, OKUBO K, FUJII T, et al. Effect of matrix properties on the fatigue damage initiation and its growth in plain woven carbon fabric vinylester composites[J]. Composites Ence and Technology, 2014,104:125-135. |
[54] | WHITWORTH H A. Evaluation of the residual strength degradation in composite laminates under fatigue loading[J]. Composite Structures, 2000,48(4):261-264. |
[55] | HOSOI A, SATO N, KUSUMOTO Y, et al. High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 10~8 cycles (initiation and propagation of delamination considering interaction with transverse cracks)[J]. International Journal of Fatigue, 2010,32(1):29-36. |
[56] | NENADSTOJKOVI C. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue, 2017,103:478-487. |
[57] | YANG J N, LEE L J, SHEU D Y. Modulus reduction and fatigue damage of matrix dominated composite laminates[J]. Composite Structures, 1992,21(2):91-100. |
[58] | WU Wen. A study of fatigue damage and fatigue life of composite laminates[J]. Journal of Composite Materials, 1996,30(1):123-137. |
[59] | 吴增文. 复合材料薄壁结构随机疲劳损伤模型及分析[D]. 哈尔滨:哈尔滨工业大学, 2019: 65-70. |
WU Zengwen. Stochastic fatigue damage model and Analysis of composite thin-wall structures[D]. Harbin:Harbin Institute of Technology, 2019: 65-70. | |
[60] | 罗白璐, 朱英富, 李之达, 等. 夹芯结构的疲劳裂纹损伤扩展研究[J]. 船舶力学, 2019,23(8):988-996. |
LUO Baolu, ZHU Yingfu, LI Zhida, et al. Study on fatigue crack damage growth of sandwich structures[J]. Ship Mechanics, 2019,23(8):988-996. | |
[61] | 陈基伟, 姚卫星, 宗俊达, 等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报, 2019,51(4):534-539. |
CHEN Jiwei, YAO Weixing, ZONG Junda, et al. Studyon probability model of residual stiffness of composite materials[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2019,51(4):534-539. | |
[62] | 宗俊达, 姚卫星. 复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016,33(2):280-286. |
ZONG Junda, YAO Weixing. Composite residual stiffness degradation composite model of composite materials[J]. Acta Materiae Composites Sinica, 2016,33(2):280-286. | |
[63] | PARK K J, KANG H J, CHOI I H, et al. Progressivefailure analysis of carbon-fiber reinforced polymer (CFRP) laminates using combined material nonlinear elasticity and continuum damage mechanics based on treatment of coupon test[J]. Journal of Composite Materials, 2015,488/489:525-529. |
[64] | 康军, 陈永强, 陈尚, 等. 基于加速试验方法的复合材料长期寿命预测[J]. 玻璃钢/复合材料, 2017(3):25-30. |
KANG Jun, CHEN Yongqiang, CHEN Shang, et al. Long-term life prediction of composites based on accelerated test method[J]. Fiber Reinforced Plastics/Composites, 2017(3):25-30. | |
[65] | 王奇志, 张迪, 林慧星. 高温下C/SiC复合材料疲劳寿命预估方法研究[J]. 计算机仿真, 2019,36(7):208-212. |
WANG Qizhi, ZHANG Di, LIN Huixing. Study on fatigue life prediction method of C/SiC composites at high temperature[J]. Computer Simulation, 2019,36(7):208-212. | |
[66] | XU J, LOMOV S V, VERPOEST I, et al. A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis[J]. Computers & Structures, 2015,152:96-112. |
[67] | ZHANG L, HU D, WANG R, et al. Establishing RVE model composed of dry fibers and matrix for 3D four-directional braided composites[J]. Journal of Composite Materials, 2018,53(14):1917-1934. |
[68] | SHEN X. RVE model with porosity for 2D woven CVI SiCf/SiC composites[J]. Journal of Materials Engineering & Performance, 2016,25(12):5138-5144. |
[1] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[2] | 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf / SiC 复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80. |
[3] | 林琛, 成玲. 缝合复合材料的研究进展及其在海洋领域的应用[J]. 纺织学报, 2020, 41(12): 166-173. |
[4] | 陈小明, 李皎, 张一帆, 谢军波, 李晨阳, 陈利. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020, 41(11): 156-161. |
[5] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[6] | 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73. |
[7] | 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71. |
[8] | 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66. |
[9] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[10] | 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44. |
[11] | 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84. |
[12] | 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63. |
[13] | 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173. |
[14] | 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187. |
[15] | 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77. |
|