纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 197-204.doi: 10.13475/j.fzxb.20200102308
• 综合述评 • 上一篇
XIANG Zhong(), WANG Yuhang, WU Jinbo, QIAN Miao, HU Xudong
摘要:
为实现对纺织生产过程中过氧化氢(HP)浓度的宽量程检测,提升检测精度、效率及其工艺适应性,对现阶段有关HP浓度检测方法及数学模型进行了介绍。阐述了HP浓度6种检测方法:常规滴定法、电化学分析法、分光光度法、荧光/化学发光法、折射率法和微波法,分析了各检测方法工作原理、研究进展及适用性,剖析了相关数学模型。研究发现:常规滴定法虽然精度高但耗时耗力;电化学分析法响应快,抗干扰能力强;分光光度法成本较高,相对复杂;荧光/化学发光法灵敏度高,但干扰较多;折射率和微波法灵敏度高,但目前只能测量单质溶液。经分析得知,电化学分析法比较适用于纺织领域中HP的检测问题,可有效解决高浓度HP所引起的欧姆降问题,是未来HP检测研究重点。
中图分类号:
[1] | 宋春林, 张志丰, 幺洪波, 等. 过氧化氢的供需现状和发展趋势[J]. 氯碱工业, 2010,46(4):21-23. |
SONG Chunlin, ZHANG Zhifeng, YAO Hongbo, et al. Supply and demand situation and development trend of lhydrogen peroxide[J]. Chlor-Alkali Industry, 2010,46(4):21-23. | |
[2] | 黄益, 李思琪, 阮斐斐, 等. 卟啉铁/双氧水体系在棉织物低温催化漂白中的应用[J]. 纺织学报, 2018,39(6):75-80. |
HUANG Yi, LI Siqi, RUAN Feifei, et al. Hematin chloride/hydrogen peroxide in the application of the low temperature catalytic bleached cotton fabrics[J]. Journal of Textile Research, 2018,39(6):75-80. | |
[3] | 王雪燕. 双氧水低温低碱漂白技术的研究现状及其发展趋势[J]. 成都纺织高等专科学校学报, 2016,33(2):134-138. |
WANG Xueyan. Research status and development trend of low temperature and low alkali bleaching of hydrogen peroxide[J]. Journal of Chengdu Textile College, 2016,33(2):134-138. | |
[4] | DANNACHER J, SCHLENKER W. The mechanism of hydrogen peroxide bleaching[J]. Textile Chemist and Colorist, 1996,28(11):24-28. |
[5] | 张帆, 张儒, 周文常, 等. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019,40(8):101-108. |
ZHANG Fan, ZHANG Ru, ZHOU Wenchang, et al. Low temperature bleaching of cotton knitwear using hydrogen peroxide catalyzed by copper complexes[J]. Journal of Textile Research, 2019,40(8):101-108.
doi: 10.1177/004051757004000202 |
|
[6] | 唐文君, 彭明华, 向中林, 等. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019,40(2):125-129. |
TANG Wenjun, PENG Minghua, XIANG Zhonglin, et al. Fast rolling and steaming bleaching process for cotton fabrics using cationic bleaching activator[J]. Journal of Textile Research, 2019,40(2):125-129. | |
[7] | 陈加敏, 孟家光, 薛涛. 双氧水漂白活化剂概述[J]. 染整技术, 2016,38(12):6-9. |
CHEN Jiamin, MENG Jiaguang, XUE Tao. Summary of hydrogen peroxide bleaching activators[J]. Textile Dyeing and Finishing Journal, 2016,38(12):6-9. | |
[8] | 龚安华, 孙岳玲. 基于混凝-吸附-氧化法的印染废水处理[J]. 纺织学报, 2012,33(4):95-99. |
GONG Anhua, SUN Yueling. Test on dyeing and printing wastwater treatment by coagulation-adsorption-oxidation[J]. Journal of Textile Research, 2012,33(4):95-99. | |
[9] | 栗玉鸿. Fenton氧化法去除制革废水中难降解鞣剂的研究[D]. 哈尔滨:哈尔滨工业大学, 2011: 11-14. |
LI Yuhong. Study on removal of refractory tanning agents from leather wastewater by Fenton oxidation[D]. Harbin: Harbin Institute of Technology, 2011: 11-14. | |
[10] |
FENTON H J H. Oxidation of tartaric acid in presence of iron[D]. Journal of the Chemical Society, 1894,65:899-910.
doi: 10.1039/CT8946500899 |
[11] | 李凤娟, 宿辉, 李小龙, 等. 高级氧化技术在难降解工业废水处理中的应用研究进展[J]. 环保科技, 2017,23(2):55-57. |
LI Fengjuan, SU Hui, LI Xiaolong, et al. Application of advanced oxidation technology in the treatment of refractory industrial wastewater[J]. Environmental Protection and Technology, 2017,23(2):55-57. | |
[12] | 吴梦霞, 孙梅香, 兰天翔, 等. 新型光电-Fenton法处理印染废水的研究[J]. 水处理技术, 2019,45(12):86-90. |
WU Mengxia, SUN Meixiang, LAN Tianxiang, et al. A new photoelectricity-Fenton method for the treatment of printing and dyeing wastewater[J]. Technology of Water Treatment, 2019,45(12):86-90. | |
[13] | 彭忠勇, 曹永民. 自动电位滴定仪在双氧水装置在线分析中的应用[J]. 石化技术, 2018,25(9):330. |
PENG Zhongyong, CAO Yongmin. Application of automatic potentiometric titrator in on-line analysis of hydrogen peroxide device[J]. Petrochemical Industry Technology, 2008,25(9):330. | |
[14] | 关会娟. 碳纳米纤维复合材料制备及其过氧化氢电化学传感性能研究[D]. 郑州:郑州大学, 2018: 7-8. |
GUAN Huijuan. Preparation of carbon nanofiber composites and their electrochemical sensing properties of hydrogen peroxide[D]. Zhengzhou: Zhengzhou University, 2018: 7-8. | |
[15] | 张祥琼, 刘波, 张凌云. 电化学分析法在水质分析与监测中的应用综述[J]. 城镇供水, 2018(1):31-35. |
ZHANG Xiangqiong, LIU Bo, ZHANG Linyun. Application of electrochemical analysis in water quality analysis and monitoring[J]. Journal of China Urban Water Association, 2018(1):31-35. | |
[16] | 陈成, 崔建生, 龚燕华, 等. 氯离子检测技术探究—直接电位法[J]. 建材世界, 2019,40(1):102-105. |
CHEN Cheng, CUI Jiansheng, GONG Yanhua, et al. Study on chloride ion detection technology-direct potential method[J]. The World of Building Materials, 2019,40(1):102-105. | |
[17] |
ANANTHI A, NARESH K, MATHIYARASU J, et al. A novel potentiometric hydrogen peroxide sensor based on pKa changes of vinylphenylboronic acid mem-branes[J]. Materials Letters, 2011,65(23/24):3563-3565.
doi: 10.1016/j.matlet.2011.07.087 |
[18] |
AWAD M I, ORITANI T, OHSAKA T. Simultaneous potentiometric determination of peracetic acid and hydrogen peroxide[J]. Analytical Chemistry, 2003,75(11):2688-2693.
pmid: 12948137 |
[19] |
PARRILLA M, CÁNOVAS R, ANDRADE F J. Enhanced potentiometric detection of hydrogen peroxide using a platinum electrode coated with nafion[J]. Electroanalysis, 2017,29(1):223-230.
doi: 10.1002/elan.v29.1 |
[20] | 陈家全. 流动注射不可逆双安培分析法研究及其应用[D]. 西安:西北大学, 2004: 2-5. |
CHEN Jiaquan. Study and application of flow injection irreversible double ampere analysis method[D]. Xi'an: Northwestern University, 2004: 2-5. | |
[21] |
SAZHINA N N. Determination of antioxidant activity of various bioantioxidants and their mixtures by the amperometric method[J]. Russian Journal of Bioorganic Chemistry, 2017,43(7):771-775.
doi: 10.1134/S1068162017070147 |
[22] |
WESTBROEK P, TEMMERMAN E, KIEKENS P. Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system[J]. Analytica Chimica Acta, 1999,385(1):423-428.
doi: 10.1016/S0003-2670(98)00604-7 |
[23] | 金根娣, 乔秋菊, 胡效亚. 硫酸双肼屈嗪修饰玻碳电极安培法测定过氧化氢[J]. 分析科学学报, 2011,27(3):293-296. |
JIN Gendi, QIAO Qiuju, HU Xiaoya. Determination of hydrogen peroxide with dihydrazine sulfate modified glass carbon electrode amperometry[J]. Journal of Analytical Sciences, 2011,27(3):293-296. | |
[24] | 范慧敏, 邓春艳, 阳明辉, 等. 基于新型二氧化锰-碳纳米管复合材料的高灵敏过氧化氢传感器[J]. 分析科学学报, 2012,28(4):459-464. |
FAN Huimin, DENG Chunyan, YANG Minghui, et al. High sensitivity hydrogen peroxide sensor based on new manganese dioxide-carbon nanotube composites[J]. Journal of Analytical Science, 2012,28(4):459-464. | |
[25] |
WU M Q, SNOOK G A, GUPTA V, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline[J]. Journal of Materials Chemistry, 2005,15(23):2297-2303.
doi: 10.1039/b418835g |
[26] |
TERZI F, PELLICIARI J, ZANFROGNINI B, et al. Behaviour of Ti electrode in the amperometric determination of high concentrations of strong oxidising species[J]. Electrochemistry Communications, 2013,34:138-141.
doi: 10.1016/j.elecom.2013.05.042 |
[27] |
KNITTEL D, WEI Q, SCHOLLMEYER E. Strategies for the development of a voltammetric sensor for the determination of hydrogen peroxide at high concentrations[J]. Fresenius' Journal of Analytical Chemistry, 1994,348(12):820-824.
doi: 10.1007/BF01780984 |
[28] |
WESTBROEK P, TEMMERMAN E, KIEKENS P. Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system[J]. Analytica Chimica Acta, 1999,385(1):423-428.
doi: 10.1016/S0003-2670(98)00604-7 |
[29] | 罗思苑. 对库伦法测定COD的改良[J]. 环境, 2011(S1):55-56. |
LUO Siyuan. Improvement of coulomb method for determination of COD[J]. Environment, 2011(S1):55-56. | |
[30] |
FIEDLER U. Coulometric microdetermination of peroxides—I. hydrogen peroxide[J]. Talanta, 1973,20(11):1097-1104.
doi: 10.1016/0039-9140(73)80071-2 pmid: 18961387 |
[31] |
YUE Hongfei, BU Xin, HUANG Mingsing, et al. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection[J]. International Journal of Pharmaceutics, 2009,375(1):33-40.
doi: 10.1016/j.ijpharm.2009.03.027 |
[32] |
JUÁREZ-GÓMEZ J, ROSAS-TATE E S, ROA-MORALES G, et al. Laccase inhibition by mercury: kinetics, inhibition mechanism, and preliminary application in the spectrophotometric quantification of mercury ions[J]. Journal of Chemistry, 2018. DOI: 10.1155/2018/746297.
doi: 10.1155/2013/262580 pmid: 25705550 |
[33] |
WANG Mengyun, WANG Daiyao, QIU Shiyi, et al. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction[J]. Environmental Science and Pollution Research International, 2019,26:27063-27072.
pmid: 31313234 |
[34] |
SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate[J]. Analyst, 1980,105(1255):950-954.
doi: 10.1039/an9800500950 |
[35] |
XIAO Junyang, WANG Mengyun, PANG Zijun, et al. Simultaneous spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide using potassium iodide as the indicator[J]. Analytical Methods, 2019,11(14):1-21.
doi: 10.1039/C9AY90001B |
[36] |
ZOU Jing, CAI Huahua, WANG Daiyao, et al. Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system[J]. Chemosphere, 2019,224:646-652.
doi: 10.1016/j.chemosphere.2019.03.005 pmid: 30849625 |
[37] | 何焱焱. 基于过氧化氢氧化的化学发光新方法研究及其应用[D]. 重庆:西南大学, 2017: 1-14. |
HE Yanyan. Research and application of a new chemiluminescence method based on hydrogen peroxide oxidation[D]. Chongqing: Southwest university, 2017: 1-14. | |
[38] |
CUI M L, LIU J M, WANG X X, et al. A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2[J]. Sensors and Actuators B: Chemical, 2013,188:53-58.
doi: 10.1016/j.snb.2013.05.098 |
[39] |
CHEN Z, QIAN S, CHEN X, et al. Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate[J]. Analyst, 2012,137(18):4356-4361.
pmid: 22836488 |
[40] |
XIONG X, TANG Y, ZHANG L, et al. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters[J]. Talanta, 2015,132:790-795.
doi: 10.1016/j.talanta.2014.10.022 pmid: 25476379 |
[41] |
ZHANG J J, WU M, CHEN D H, et al. Ultrasensitive determination of melamine in milk products and biological fluids by luminol-hydrogen peroxide chemiluminescence[J]. Journal of Food Composition and Analysis, 2011,24(7):1038-1042.
doi: 10.1016/j.jfca.2010.09.021 |
[42] | 董淼, 董文飞, 黄玉明, 等. 金属有机框架NH_2-MIL-88增强过氧化氢氧化鲁米诺化学发光法检测过氧化氢[J]. 西南大学学报(自然科学版), 2017,39(3):134-136. |
DONG Miao, DONG Wenfei, HUANG Yuming, et al. Detection of hydrogen peroxide by nh_2-MIL-88 enhanced hydrogen peroxide oxidation luminol chemiluminescence in metal organic framework[J]. Journal of Southwest University (Natural Science Edition), 2017,39(3):134-136. | |
[43] |
MARCHAND A, ROULLAND I, SEMENCE F, et al. Volumetric absorptive microsampling (VAMS) technology for IGF-1 quantification by automated chemiluminescent immunoassay in dried blood[J]. Growth Hormone & IGF Research, 2020,50:27-34.
doi: 10.1016/j.ghir.2019.12.001 pmid: 31835105 |
[44] | PENG Baojin. Sensitive hydrogen peroxide content measurement technology using refractive-index-based optical device[C]// YING Chaofu, YE Huiqun, et al, Proceedings of SPIE. Bellingham: SPIE, 2005: 568-574. |
[45] | CHOI H. A novel concentration detection method of hydrogen peroxide using microwave cavity perturbation technique[C]// Cuenca J, Attard G. proceedings of 2014 44th European Microwave Conference. Rome: IEEE, 2014: 632-635. |
[46] | 古映莹, 李丹. 高锰酸钾法、碘量法和铈量法测定过氧化氢的比较[J]. 理化检验(化学分册), 2007(9):788-791. |
GU Yingying, LI Dan. Comparison of potassium permanganate method, iodine method and cerium method for determination of hydrogen peroxide[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2007(9):788-791. | |
[47] | KAZEMI ESFEH H, HAMID M K A. Algebraic form and new approximation of butler-volmer equation to calculate the activation overpotential[J]. Journal of Electrochemical Energy Conversion and Storage, 2016,13(2):1-10. |
[48] |
NOREN D A, HOFFMAN M A. Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models[J]. Journal of Power Sources, 2005,152(1):175-181.
doi: 10.1016/j.jpowsour.2005.03.174 |
[49] |
MANN R F, AMPHLETT J C, PEPPLEY B A, et al. Application of Butler-Volmer equations in the modelling of activation polarization for PEM fuel cells[J]. Journal of Power Sources, 2006,161(2):775-781.
doi: 10.1016/j.jpowsour.2006.05.026 |
[50] |
HESS A, ROODE-GUZMER Q, HEUBNER C, et al. Determination of state of charge-dependent asymmetric Butler-Volmer kinetics for LixCoO2 electrode using GITT measurements[J]. Journal of Power Sources, 2015,299:156-161.
doi: 10.1016/j.jpowsour.2015.07.080 |
[51] |
CHAI X S, HOU Q X, LUO Q, et al. Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method[J]. Analytica Chimica Acta, 2004,507(2):281-284.
doi: 10.1016/j.aca.2003.11.036 |
[52] |
WALDRON R A. Perturbation theory of resonant cavities[J]. Proceedings of the IEEE Part C: Monographs, 1960,107(12):272-274.
doi: 10.1049/pi-c.1960.0041 |
[1] | 徐云龙, 夏风林. 双针床经编机间隔距离对纱线需求量的影响分析[J]. 纺织学报, 2019, 40(08): 151-156. |
[2] | 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37. |
[3] | 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124. |
[4] | 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154. |
[5] | 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65. |
[6] | 韩晓果 肖学良 钱坤. 紧密机织物高气压下面外变形的机制[J]. 纺织学报, 2017, 38(07): 49-55. |
[7] | 张建新 张银露 胡旭东. 光谱优化处理结合多层次支持向量机的混合染液浓度检测方法[J]. 纺织学报, 2017, 38(07): 90-94. |
[8] | 张宁 李忠健 潘如如 高卫东 韩要宾. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(05): 37-42. |
[9] | 李忠健 潘如如 高卫东. 应用纱线序列图像的电子织物构建[J]. 纺织学报, 2016, 37(3): 35-40. |
[10] | 罗娟 郗欣甫 孙以泽. 用于簇绒地毯织机的新型钩刀割绒机构[J]. 纺织学报, 2016, 37(06): 118-123. |
[11] | 王敏超 熊杰. 双轴向不同拉伸速率下丝素蛋白/聚已内酯复合纳米纤维膜的力学性能[J]. 纺织学报, 2015, 36(06): 18-23. |
[12] | 王敏超 熊杰. 取向排列丝素蛋白/聚已内酯复合纳米纤维膜的双轴向拉伸性能[J]. 纺织学报, 2015, 36(04): 31-36. |
[13] | 章斐燕 李启正 祝成炎. 定综片数小提花多臂组织设计方法与CAD实现[J]. 纺织学报, 2014, 35(7): 140-0. |
[14] | 胡婷莉 黄健平 阎克路 李戎 王建庆 侯爱芹. 酶氧前处理新工艺节能减排效果评估[J]. 纺织学报, 2014, 35(6): 74-0. |
[15] | 张中启. 针织毛衫圆形领数学模型的建立[J]. 纺织学报, 2014, 35(1): 102-0. |
|