纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 7-13.doi: 10.13475/j.fzxb.20200202707

• 纤维材料 • 上一篇    下一篇

聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能

管福成, 郭静, 吕丽华(), 谭倩, 宋敬星, 张欣   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2020-02-13 修回日期:2020-07-17 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 吕丽华
  • 作者简介:管福成(1983—),男,工程师,博士。主要研究方向为功能纤维。
  • 基金资助:
    国家自然科学基金项目(51773024)

Hydrogen bonding mechanism and properties of polyvinyl alcohol/krill protein fibers

GUAN Fucheng, GUO Jing, LÜ Lihua(), TAN Qian, SONG Jingxing, ZHANG Xin   

  1. College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2020-02-13 Revised:2020-07-17 Online:2020-10-15 Published:2020-10-27
  • Contact: Lü Lihua

摘要:

为解决聚乙烯醇(PVA)难以热塑加工和功能单一的问题,以磷虾蛋白(AKP)和水为增塑剂,通过熔体纺丝制备了PVA/AKP纤维。通过红外光谱仪表征了PVA/AKP纤维中的氢键作用,并分析氢键作用机制。借助X射线衍射仪、扫描电子显微镜、差示扫描量热仪和单纤维强力仪等分析了PVA/AKP纤维的结晶性、形态结构、热性能和力学性能等。结果表明:随着AKP质量分数的增加,PVA/AKP纤维中分子内氢键含量和结晶度呈先增大后减小趋势,当AKP质量分数为2%时,PVA/AKP纤维中分子内氢键含量达到最大值(85.37%),结晶度也达到最大值(48%),该条件下纤维断裂强度达到最大值,为2.15 cN/dtex;AKP的加入有助于提高PVA纤维的表面光滑性,PVA/AKP纤维断面呈规则圆形;PVA/AKP纤维对碱溶液的响应性更强,在水中浸渍2 h后纤维吸水率恒定在36%。

关键词: 聚乙烯醇/磷虾蛋白纤维, 熔体纺丝, 氢键作用机制, 结晶性

Abstract:

To solve the difficult thermoplastic processing and single function of polyvinyl alcohol(PVA), krill protein(AKP) and water were used as plasticizers to prepare PVA/AKP fibers by melt spinning. The hydrogen bonding in PVA/AKP fiber was characterized by infrared spectrometer, and the mechanism of hydrogen bonding was analyzed. Additionally, the crystallinity, morphology, thermal properties and mechanical properties of PVA/AKP fibers were characterized by X-ray diffractometer, scanning electron microscope, differential scanning calorimeter and single fiber strength tester, respectively. The results show that with the increase of AKP mass fraction, the content of intramolecular hydrogen bond and crystallinity of PVA/AKP fibers firstly increases and then decreases. When the mass fraction of AKP is 2%, the content of intramolecular hydrogen bond in PVA/AKP fibers reaches the maximum value (85.37%), and the crystallinity also reaches the maximum value (48%), and the fiber breakage strength reaches a maximum of 2.15 cN/dtex. AKP is helpful to improve the surface smoothness of the fiber, the fiber cross section presents regular round. Additionally, PVA/AKP fibers are more responsive to alkaline solutions, and the water absorption rate of the fiber is a constant of 36% after 2 h.

Key words: polyvinyl alcohol/krill protein fiber, melt spinning, hydrogen bond action mechanism, crystallinity

中图分类号: 

  • TS151

图1

PVA、PVA/AKP纺丝工艺流程图"

图2

AKP、PVA、PVA/AKP及不同AKP质量分数PVA/AKP的红外光谱图"

图3

PVA/AKP纤维氢键作用机制"

图4

不同AKP质量分数的PVA/AKP纤维的红外光谱高斯拟合分峰图"

表1

各种氢键类型的拟合结果"

AKP质
量分数/%
氢键
类型
氢键表
达式
波数/
cm-1
平均峰
面积
相对强
度/%
自由羟基 —OH 3 575 2.17 8.32
1 分子内氢键 OH…OH 3 428 28.65 75.30
分子间氢键 OH…N 3 126 6.23 16.38
自由羟基 —OH 3 575 0.55 1.23
2 分子内氢键 OH…OH 3 428 37.61 85.37
分子间氢键 OH…N 3 126 5.90 12.39
自由羟基 —OH 3 575 10.96 26.92
3 分子内氢键 OH…OH 3 428 24.76 60.82
分子间氢键 OH…N 3 126 4.99 12.25
自由羟基 —OH 3 575 10.58 30.93
4 分子内氢键 OH…OH 3 428 26.14 58.80
分子间氢键 OH…N 3 126 5.53 10.27

图5

AKP、PVA、PVA/AKP及不同AKP质量分数PVA/AKP的XRD曲线"

图6

不同AKP质量分数PVA/AKP纤维的断裂强度"

图7

不同AKP质量分数PVA/AKP纤维的DSC曲线"

图8

不同AKP质量分数PVA/AKP纤维表面扫描电镜照片(×1 000)"

图9

PVA/AKP纤维表面成形机制"

图10

不同AKP质量分数PVA/AKP纤维断面扫描电镜照片(×200)"

图11

不同pH值下PVA/AKP纤维的溶胀情况"

图12

PVA/AKP纤维在不同时间下的吸水率"

[1] TIAN H F, YAN J, RAJULU A V, et al. Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity[J]. International Journal of Biological Macromolecules, 2017,96:518-523.
doi: 10.1016/j.ijbiomac.2016.12.067 pmid: 28034827
[2] 刘鹏, 李东立, 许文才, 等. PVA可生物降解材料研究进展[J]. 北京印刷学院学报, 2014(2):22-26.
LIU Peng, LI Dongli, XU Wencai, et al. Research progress in polyvinyl alcohol biodegradable material[J]. Journal of Beijing Institute of Graphic Communication, 2014(2):22-26.
[3] CRISTINA D N, MIHAI P, RALUCA M A, et al. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic mole-cules[J]. Polymers for Advanced Technologies, 2019,30(8):2143-2152.
doi: 10.1002/pat.v30.8
[4] YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019,26(11):23632-23638.
[5] KUMAR Anuj, HAN Sungsoo. PVA-based hydrogels for tissue engineering:a review[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2016,66(4):159-182.
doi: 10.1080/00914037.2016.1190930
[6] LU Hongwei, ZOU Liming, XU Yongjing, et al. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning[J]. Materials Research Express, 2018. DOI: org/ 10.1088/2053-1591.
doi: 10.1088/2053-1591/3/9/094001 pmid: 32391160
[7] 赵寰. 聚乙烯醇纤维[M]. 北京: 化学工业出版社, 2014: 109-110.
ZHAO Huan. Polyvinyl alcohol fiber [M]. Beijing: Chemical Industry Press, 2014: 109-110.
[8] ZHU Yin, WU Chengxun, ZHANG Youwei. Study on the chain entanglement of polyvinyl alcohol fiber during the dry-jet wet spinning process[J]. Fibers and Polymers, 2015,16:345-353.
doi: 10.1007/s12221-015-0345-x
[9] WU Qian, CHEN Ning, WANG Qi. Crystallization behavior of melt-spun poly(vinyl alcohol)fibers during drawing process[J]. Journal of Polymer Research, 2010,17(6):902-909.
doi: 10.1007/s10965-009-9381-9
[10] 王建铨, 吴津田, 刘鹏清, 等. 聚乙烯醇水溶纤维干法纺丝成型模拟[J]. 纺织学报, 2013,34(2):22-27.
WANG Jianquan, WU Jintian, LIU Pengqing, et al. Simulation of dry spinning of PVA soluble fiber[J]. Journal of Textile Research, 2013,34(2):22-27.
[11] 李莉. 熔法纺高强高模聚乙烯醇纤维结构与性能的研究[D]. 成都:四川大学, 2006: 42-46.
LI Li. Study on structure and properties of high strength and modulus polyvinyl alcohol fiber by melt spi-nning[D]. Chengdu: Sichuan University, 2006: 42-46.
[12] 王茹, 王珙, 李莉, 等. 改性聚乙烯醇的热性能[J]. 塑料工业, 2002,30(1):32-34.
WANG Ru, WANG Gong, LI Li, et al. Thermal properties of modified polyvinyl alcohol[J]. Plastics Industry, 2002,30(1):32-34.
[13] 肖长发. 高强度聚乙烯醇纤维结构与性能研究[J]. 高科技纤维与应用, 2005,30(2):11-17.
XIAO Changfa. Study on the structure and properties of high strength polyvinyl alcohol fibers[J]. High Technology Fibers and Applications, 2005,30(2):11-17.
[14] CHEN Xunjun, WU Shufang, YI Minghao, et al. Preparation and physicochemical properties of blend films of feather keratin and poly(vinyl alcohol) compa-tibilized by tris(hydroxymethyl)aminomthane[J]. Polymers, 2018,10(10):1054.
doi: 10.3390/polym10101054
[15] 何明, 窦瑶, 陈曼, 等. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 材料导报, 2018,32(2):198-202.
HE Ming, DOU Yao, CHEN Man, et al. Preparation and characterization of feather keratin/PVA composite nanofiber membrane[J]. Materials Review, 2018,32(2):198-202.
[16] 王宗乾, 杨海伟, 汤立洋. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018,39(11):14-19,26.
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of silk fibroin/polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018,39(11):14-19,26.
[17] DOU Yao, ZHANG Buning, HE Ming, et al. Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/PVA composite films[J]. Journal of Macromolecular Science:Part A:Pure and Applied Chemistry, 2014,51(2):1009-1015.
doi: 10.1080/10601325.2014.967108
[18] 陈曼, 何明, 郭妍婷, 等. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 材料导报, 2018,32(8):1218-1223.
CHEN Man, HE Ming, GUO Yanting, et al. Crosslinking modification and characterization of the electrospun feather keratin/poly(vinyl alcohol)/poly(ethylene oxide) nanofibrous membrane[J]. Materials Review, 2018,32(8):1218-1223.
[19] MAFTOONAZAD Neda, SHAHAMIRIAN Maryam, JOHN Dalia, et al. Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde[J]. Materials Science and Engineering C, 2019,94(1):393-402.
doi: 10.1016/j.msec.2018.09.033
[20] WANG Yaochao, WANG Ruo, CHANG Yaoguang, et al. Preparation and thermo-reversible gelling properties of protein isolate from defatted Antarctic krill (Eup-hausia superba) byproducts[J]. Food Chemistry, 2015: 188:170-176.
doi: 10.1016/j.foodchem.2015.04.126 pmid: 26041179
[21] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273.
[22] YANG Lijun, GUO Jing, YU Yue, et al. Hydrogen bonds of sodium alginate/antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016,142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[23] HERMAN S M, ALEXANDRA M, ORÉFICE R L. Protein immobilization in PVA hydrogel: a synchrotron SAXS and FTIR study[J]. Solid State Phenomena, 2007, 121-123:1355-1358.
doi: 10.4028/www.scientific.net/SSP.121-123
[24] 吴静, 郭静, 张森, 等. 盐浓度与海藻酸钠/磷虾蛋白复合体系性能的相关性[J]. 高等学校化学学报, 2017,38(9):1701-1708.
WU Jing, GUO Jing, ZHANG Sen, et al. Correlation between salt concentration and properties of sodium alginate/krill protein complex system[J]. Chinese Journal of Chemistry, 2017,38(9):1701-1708.
[25] WANG Ru, WANG Qi, LI Li. Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems[J]. Polymer International, 2003,52:1820-1826.
doi: 10.1002/pi.1385
[26] 徐斗峰, 黄长根, 唐文君, 等. 水溶性PVA纤维的溶解过程及其影响因素分析[J]. 印染助剂, 2011,28(6):24-27.
XU Doufeng, HUANG Changgen, TANG Wenjun, et al. Study on the dissolution and influencing factors of water-soluble PVA fiber[J]. Textile Auxiliaries, 2011,28(6):24-27.
[1] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[2] 张腾飞, 石禄丹, 胡红梅, 王宇, 王学利, 俞建勇. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(06): 1-7.
[3] 赵作显 洪剑寒 严喆 潘志娟. 生物可降解聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸共混物的相容性和结晶性[J]. 纺织学报, 2018, 39(08): 1-8.
[4] 郭静 刘孟竹 管福成 杨利军 宋朝阳. 环氧基扩链剂对3-羟基丁酸和4-羟基丁酸共聚物的改性研究[J]. 纺织学报, 2014, 35(8): 139-0.
[5] 万倩华;潘志娟;柳 艳;陈 军. 含纳米粉体功能性纤维的制备方法[J]. 纺织学报, 2009, 30(07): 135-141.
[6] 马清芳;程贞娟;秦伟明;黄志超;钱建华. 水溶性聚酯的制备及其性能[J]. 纺织学报, 2007, 28(6): 20-22.
[7] 闻荻江;王辉;朱新生;孙建平. 丝素蛋白的构象与结晶性[J]. 纺织学报, 2005, 26(1): 110-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!